Book contents
- Vibration Protection Systems
- Vibration Protection Systems
- Copyright page
- Contents
- Preface
- Acknowledgments
- Glossary
- 1 Vibrations Destroying Human–Machine Systems Inside and Outside
- 2 Vibration Protection Systems with Negative and Quasi-Zero Stiffness
- 3 Modeling of Elastic Postbuckling in Large and Dimensioning the Mechanisms with Negative Stiffness
- 4 The Type and Number Synthesis of Function-Generating Mechanisms
- 5 Dynamics of Systems with Sign-Changing Stiffness
- 6 Dynamics of Systems with Sign-Changing Stiffness
- 7 Dynamics of Systems with Sign-Changing Stiffness
- 8 Methods of Experimental Study of Vibration Protection Systems with Negative and Quasi-Zero Stiffness
- 9 In Harmony with Conventional Vibration Protection Systems
- 10 Development and Use of Vibration Protection Systems with Negative and Quasi-Zero Stiffness
- Index
- References
4 - The Type and Number Synthesis of Function-Generating Mechanisms
Published online by Cambridge University Press: 29 October 2021
- Vibration Protection Systems
- Vibration Protection Systems
- Copyright page
- Contents
- Preface
- Acknowledgments
- Glossary
- 1 Vibrations Destroying Human–Machine Systems Inside and Outside
- 2 Vibration Protection Systems with Negative and Quasi-Zero Stiffness
- 3 Modeling of Elastic Postbuckling in Large and Dimensioning the Mechanisms with Negative Stiffness
- 4 The Type and Number Synthesis of Function-Generating Mechanisms
- 5 Dynamics of Systems with Sign-Changing Stiffness
- 6 Dynamics of Systems with Sign-Changing Stiffness
- 7 Dynamics of Systems with Sign-Changing Stiffness
- 8 Methods of Experimental Study of Vibration Protection Systems with Negative and Quasi-Zero Stiffness
- 9 In Harmony with Conventional Vibration Protection Systems
- 10 Development and Use of Vibration Protection Systems with Negative and Quasi-Zero Stiffness
- Index
- References
Summary
Structural design is another strategic point in developing a vibration protection system with mechanisms of negative and quasi-zero stiffness. Missing this stage of the design and errors in designing the structure of mechanisms predisposed to unstable motion can ruin the development idea. A method of structural design of function-generating mechanisms for such systems is proposed. This includes the type and number synthesis of the mechanisms, making this process less empirical and more reasonable and bringing a great number of new candidates. The atlases of the mechanisms for seat suspensions and bogie secondary suspensions for carbody of high-speed trains are elaborated. The method fundamentals are (a) the function-generating mechanism is to be perfectly structured, that is, with a minimal number of redundant constraints; (b) due to unstable motion and transposition of clearances in kinematic pairs, the mechanism with negative stiffness must not directly join the input and output structural elements of function-generating mechanism to avoid structural indeterminacy; (c) mechanisms with negative stiffness shall be joined to the input structural element, and with no more than two kinematic pairs, one of these two is to be higher; (d) an external damping mechanism can be removed from function-generating mechanisms without degradation of the system performance.
Keywords
- Type
- Chapter
- Information
- Vibration Protection SystemsNegative and Quasi-Zero Stiffness, pp. 85 - 115Publisher: Cambridge University PressPrint publication year: 2021