Skip to main content Accessibility help
×
Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T06:52:34.384Z Has data issue: true hasContentIssue false

7 - Learning Popularity for Proactive Caching in Cellular Networks

from Part II - Proactive Caching

Published online by Cambridge University Press:  19 October 2020

Thang X. Vu
Affiliation:
Université du Luxembourg
Ejder Baştuğ
Affiliation:
Nokia Bell Labs, France
Symeon Chatzinotas
Affiliation:
Université du Luxembourg
Tony Q. S. Quek
Affiliation:
Singapore University of Technology and Design
Get access

Summary

Video data have been showed to dominate a significant portion of mobile data traffic and have a strong influence on a backhaul congestion issue in cellular networks. To tackle the problem, proactive caching is considered as a prominent candidate in terms of cost efficiency. In this chapter, we study a novel popularity-predicting-based caching procedure that takes raw video data as input to determine an optimal cache placement policy, which deals with both published and unpublished videos. For dealing with unpublished videos whose statistical information is unknown, features from the video content are extracted and condensed into a high-dimensional vector. This type of vector is then mapped to a lower-dimensional space. This process not only alleviates the computational burden but also creates a new vector that is more meaningful and comprehensive. At this stage, different types of prediction models can be trained to anticipate the popularity, for which information from published videos is used as training data.

Type
Chapter
Information
Wireless Edge Caching
Modeling, Analysis, and Optimization
, pp. 127 - 145
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×