Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T06:25:53.791Z Has data issue: false hasContentIssue false

Chapter 6 - Genetic Epilepsies in Females

Published online by Cambridge University Press:  19 December 2024

Esther Bui
Affiliation:
Toronto Western Hospital
P. Emanuela Voinescu
Affiliation:
Brigham & Women's Hospital, Boston, MA
Get access

Summary

Some epilepsy syndromes are more common in females such as genetic generalized epilepsy (GGE) including juvenile myoclonic epilepsy (JME). JME is also more frequently transmitted to offspring by the women affected with epilepsy than by men. Other epilepsy syndromes limited to females are frequently associated to pathogenic variants in genes located on the X chromosome such as Rett syndrome, CDKL5 deficiency disorder, subcortical band heterotopia, PCDH19 epilepsy and Aicardi syndrome. In this chapter we described these conditions and summarize the most relevant diagnostic features and treatment considerations. Recognizing these syndromes helps the clinician in selecting appropriate treatment, explains some spontaneous miscarriages and is a tool in counseling patients and family members about the risk of transmission. Genetic diagnosis can be made through several tests, with whole exome sequencing having the higher cost-effectiveness when compared to epilepsy panel and microarray. Treatment can be difficult and there might be some role for the use of Cannabidiol, Fenfluramine and Ganaloxone in some of these diseases. Advances in molecular genetics will likely lead to a better understanding of these epilepsy in women, and hopefully result in tailored precision medicine treatments.

Type
Chapter
Information
Women with Epilepsy
A Practical Management Handbook
, pp. 101 - 121
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Doose, H, Neubauer, BA. Preponderance of female sex in the transmission of seizure liability in idiopathic generalized epilepsy. Epilepsy Res. 2001;43(2):103–14.CrossRefGoogle ScholarPubMed
Christensen, J, Kjeldsen, MJ, Andersen, H, Friis, ML. Gender differences in epilepsy. Epilepsia. 2005;46(6):956–60.CrossRefGoogle ScholarPubMed
Pal, D. K., Durner, M., Klotz, I., et al. Complex inheritance and parent-of-origin effect in juvenile myoclonic epilepsy. Brain Dev. 2006;28(2):92–8.CrossRefGoogle ScholarPubMed
Loddenkemper, T, Sheidley, BR, Poduri, A. Diagnostic yield of genetic tests in epilepsy. Neurology. 2019;92(5):e418e428.Google Scholar
Svenstrup, D, Jørgensen, HL, Winther, O, et al. Rare disease diagnosis: A review of web search, social media and large-scale data-mining approaches. Rare Dis. 2015;3(1):e1083145. https://doi.org/10.1080/21675511.2015.1083145.CrossRefGoogle ScholarPubMed
Schultz, RJ, Glaze, DG, Motil, KJ, et al. The pattern of growth failure in Rett syndrome. Am J Dis Child. 1993;147(6):633–7. https://doi.org/10.1001/archpedi.1993.02160300039018.Google ScholarPubMed
Fu, C, Armstrong, D, Marsh, E, et al. Consensus guidelines on managing Rett syndrome across the lifespan. BMJ Paediatr Open. 2020;4(1):e000717. https://doi.org/10.1136/bmjpo-2020-000717.CrossRefGoogle ScholarPubMed
Brunetti, S, Lumsden, DE. Rett syndrome as a movement and motor disorder: A narrative review. European Journal of Paediatric Neurology, 2020;28:2937. https://doi.org/10.1016/j.ejpn.2020.06.020.CrossRefGoogle ScholarPubMed
Glaze, DG. Epilepsy and the natural history of Rett syndrome. Neurology. 2010;74(11):909–12. https://doi.org/10.1212/WNL.0b013e3181d6b852.CrossRefGoogle ScholarPubMed
Pintaudi, M, Grazia, M, Vignoli, A, et al. Epilepsy in Rett syndrome: Clinical and genetic features. Epilepsy Behav. 2010;19(3):296300. http://dx.doi.org/10.1016/j.yebeh.2010.06.051.CrossRefGoogle ScholarPubMed
Operto, FF, Mazza, R, Maria, G, Pastorino, G. Epilepsy and genetic in Rett syndrome: A review. Brain Behav. 2019;9(5):e01250. https://doi.org/10.1002/brb3.1250.CrossRefGoogle ScholarPubMed
Nissenkorn, A, Gak, E, Vecsler, M, et al. Epilepsy in Rett syndrome: The experience of a national Rett center. Epilepsia. 2010;51(7):1252–8. https://doi.org/10.1111/j.1528-1167.2010.02597.x.CrossRefGoogle ScholarPubMed
Glaze, DG, Schultz, RJ, Frost, JD. Rett syndrome: Characterization of seizures versus non-seizures. Electroencephalogr Clin Neurophysiol. 1998;106:7983. https://doi.org/10.1016/s0013-4694(97)00084-9.CrossRefGoogle ScholarPubMed
Vashi, N, Justice, MJ. Treating Rett syndrome: From mouse models to human therapies. Mamm Genome. 2019;30(5):90110. http://dx.doi.org/10.1007/s00335-019-09793-5.CrossRefGoogle ScholarPubMed
Krajnc, N. Management of epilepsy in patients with Rett syndrome: Perspectives and considerations. Ther Clin Risk Manag. 2015;11:925–32. https://doi.org/10.2147/TCRM.S55896.Google ScholarPubMed
Kirby, RS, Lane, JB, Childers, J, et al. Longevity in Rett syndrome: Analysis of the North American Database. J Pediatr. 2010;156(1):135–8. http://dx.doi.org/10.1016/j.jpeds.2009.07.015.CrossRefGoogle ScholarPubMed
Armstrong, DD, Dunn, JK, Schultz, RJ, et al. Organ growth in Rett syndrome: A postmortem examination analysis. Pediatr Neurol. 1999;20(2):125–9. https://doi.org/10.1016/s0887-8994(98)00124-6.CrossRefGoogle ScholarPubMed
Dolce, A, Ben-Zeev, B, Naidu, S, Kossoff, EH. Rett syndrome and epilepsy: An update for child neurologists. Pediatr Neurol. 2013;48(5):337–45. http://dx.doi.org/10.1016/j.pediatrneurol.2012.11.001.CrossRefGoogle ScholarPubMed
Ramocki, MB, Tavyev, YJ, Peters, SU. The MECP2 duplication syndrome. Am J Med Genet. 2010;152(5):1079–88. https://doi.org/10.1002/ajmg.a.33184.www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.Google Scholar
Müller, A, Helbig, I, Jansen, C, et al. Retrospective evaluation of low long-term efficacy of antiepileptic drugs and ketogenic diet in 39 patients with CDKL5-related epilepsy. Eur J Paediatr Neurol. 2016;20(1):147–51. http://dx.doi.org/10.1016/j.ejpn.2015.09.001.CrossRefGoogle ScholarPubMed
Fehr, S, Downs, J, Ho, G, et al. Functional abilities in children and adults with the CDKL5 disorder. Am J Med Genet Part A. 2016;170(11):2860–9.CrossRefGoogle ScholarPubMed
Fehr, S, Wong, K, Chin, R, et al. Seizure variables and their relationship to genotype and functional abilities in the CDKL5 disorder. Neurology. 2016;87(21):2206–13.CrossRefGoogle ScholarPubMed
Olson, HE, Demarest, ST, Pestana-Knight, EM, Swanson, LC. Cyclin-dependent kinase-like 5 (CDKL%) deficiency disorder: Clinical review. Pediatr Neurol. 2019;97:1825.CrossRefGoogle Scholar
Devinsky, O, Verducci, C, Thiele, EA, et al. Open-label use of highly purified CBD (Epidiolex®) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Epilepsy Behav. 2018;86:131–7.CrossRefGoogle ScholarPubMed
Devinsky, O, King, LT, Schwartz, D, Conway, E, Price, D. Effect of fenfluramine on convulsive seizures in CDKL5 deficiency disorder. Epilepsia. 2021;62(7):e98102.CrossRefGoogle ScholarPubMed
Aledo-Serrano, Á, Gómez-Iglesias, P, Toledano, R, et al. Sodium channel blockers for the treatment of epilepsy in CDKL5 deficiency disorder: Findings from a multicenter cohort. Epilepsy & Behavior. 2021;118:37.CrossRefGoogle ScholarPubMed
Mari, F, Azimonti, S, Bertani, I, et al. CDKL5 belongs to the same molecular pathway of MECP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet. 2005;14(14):1935–46.CrossRefGoogle Scholar
Parrini, E, Conti, V, Dobyns, WB, Guerrini, R. Genetic basis of brain malformations. Mol Syndromol. 2016;7(4):220–33.CrossRefGoogle ScholarPubMed
Poolos, NP, Das, S, Clark, GD, et al. Males with epilepsy, complete subcortical band heterotopia, and somatic mosaicism for DCX. Neurology. 2002;58(10):1559–62. https://doi.org/10.1212/wnl.58.10.1559. PMID: 12034802.CrossRefGoogle ScholarPubMed
Poolos, NP, Das, S, Clark, GD et al. Males with epilepsy, complete subcortical band heterotopia, and somatic mosaicism for DCX. Neurology. 2002;58(10):1559–62.CrossRefGoogle ScholarPubMed
Dericioglu, N, Oguz, KK, Ergun, EL, Tezer, F, Saygi, S Ictal/interictal EEG patterns and functional neuroimaging findings in subcortical band heterotopia: Report of three cases and review of the literature. Clin EEG Neurosci. 2008;39(1):43–9.CrossRefGoogle ScholarPubMed
Bernasconi, A, Martinez, V, Rosa-Neto, P, et al. Surgical resection for intractable epilepsy in “double cortex” syndrome yields inadequate results. Epilepsia. 2001;42(9):1124–9.CrossRefGoogle ScholarPubMed
Mann, DM. Greenfield’s neuropathology, 7th edition. Journal of Neurology, Neurosurgery & Psychiatry. 2003;74:142.CrossRefGoogle Scholar
Ross, ME, Allen, KM, Srivastava, AK, et al. Linkage and physical mapping of X-linked lissencephaly/SBH (XLIS): A gene causing neuronal migration defects in human brain. Hum Mol Genet. 1997;6(4):555–62.CrossRefGoogle ScholarPubMed
Gleeson, JG, Luo, RF, Grant, PE, et al. Genetic and neuroradiological heterogeneity of double cortex syndrome. Ann Neurol. 2000;47(2):265–9.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Matsumoto, N, Leventer, RJ, Kuc, JA, et al. Mutation analysis of the DCX gene and genotype/phenotype correlation in subcortical band heterotopia. Eur J Hum Genet. 2001;9(1):512.CrossRefGoogle ScholarPubMed
Mei, D, Parrini, E, Pasqualetti, M, et al. Multiplex ligation-dependent probe amplification detects DCX gene deletions in band heterotopia. Neurology. 2007;68(6):446–50.CrossRefGoogle ScholarPubMed
Caspi, M, Atlas, R, Kantor, A, Sapir, T, Reiner, O. Interaction between LIS1 and doublecortin, two lissencephaly gene products. Hum Mol Genet. 2000;9(15):2205–13.CrossRefGoogle ScholarPubMed
Guerrini, R, Moro, F, Andermann, E, et al. Nonsyndromic mental retardation and cryptogenic epilepsy in women with doublecortin gene mutations. Ann Neurol. 2003;54(1):30–7.CrossRefGoogle ScholarPubMed
Khoo, HM, Gotman, J, Hall, JA, Dubeau, F. Treatment of epilepsy associated with periventricular nodular heterotopia. Curr Neurol Neurosci Rep. 2020;20(12):59. https://doi.org/10.1007/s11910-020-01082-y.CrossRefGoogle ScholarPubMed
Lange, M, Kasper, B, Bohring, A, et al. 47 patients with FLNA associated periventricular nodular heterotopia. Orphanet J Rare Dis. 2015;10(1):111. http://dx.doi.org/10.1186/s13023-015-0331-9.CrossRefGoogle ScholarPubMed
Battaglia, G, Chiapparini, L, Franceschetti, S, et al. Periventricular nodular heterotopia: Classification, epileptic history, and genesis of epileptic discharges. Epilepsia. 2006;47(1):8697.CrossRefGoogle ScholarPubMed
D’Orsi, G, Tinuper, P, Bisulli, F, et al. Clinical features and long term outcome of epilepsy in periventricular nodular heterotopia: Simple compared with plus forms. J Neurol Neurosurg Psychiatry. 2004;75(6):873–8.Google ScholarPubMed
Clapham, KR, Yu, TW, Ganesh, VS, et al. FLNA genomic rearrangements cause periventricular nodular heterotopia. Neurology. 2012;78(4):269–78.CrossRefGoogle ScholarPubMed
Liu, W, Yan, B, An, D, et al. Sporadic periventricular nodular heterotopia: Classification, phenotype and correlation with filamin A mutations. Epilepsy Res. 2017;133:3340. http://dx.doi.org/10.1016/j.eplepsyres.2017.03.005.CrossRefGoogle ScholarPubMed
Cellini, E, Vetro, A, Conti, V, et al. Multiple genomic copy number variants associated with periventricular nodular heterotopia indicate extreme genetic heterogeneity. Eur J Hum Genet. 2019;27(6):909–18. http://dx.doi.org/10.1038/s41431-019-0335-3.CrossRefGoogle ScholarPubMed
Rezazadeh, A, Bercovici, E, Kiehl, TR, et al. Periventricular nodular heterotopia in 22q11.2 deletion and frontal lobe migration. Ann Clin Transl Neurol. 2018;5(11):1314–22.CrossRefGoogle ScholarPubMed
Chen, MH, Walsh, CA. FLNA-related periventricular nodular heterotopia. In Adam, MP, Ardinger, HH, Pagon, RA, et al., eds. GeneReviews®. Seattle: University of Washington Press; 1993–2021. www.ncbi.nlm.nih.gov/sites/books/NBK1213.Google Scholar
Juberg, RC, Hellman, CD. A new familial form of convulsive disorder and mental retardation limited to females. J Pediatr. 1971;79(5):726–32.CrossRefGoogle ScholarPubMed
Samanta, D. PCDH19-related epilepsy syndrome: A comprehensive clinical review. Pediatr Neurol. 2020;105:39. https://doi.org/10.1016/j.pediatrneurol.2019.10.009.CrossRefGoogle ScholarPubMed
Hynes, K, Tarpey, P, Dibbens, LM, et al. Epilepsy and mental retardation limited to females with PCDH19 mutations can present de novo or in single generation families. J Med Genet. 2010;47(3):211–16.CrossRefGoogle ScholarPubMed
Vlaskamp, DRM, Bassett, AS, Sullivan, JE, et al. Schizophrenia is a later-onset feature of PCDH19 girls clustering epilepsy. Epilepsia. 2019;60(3):429–40.CrossRefGoogle ScholarPubMed
Scheffer, IE, Turner, SJ, Dibbens, LM, et al. Epilepsy and mental retardation limited to females: An under-recognized disorder. Brain. 2008;131(4):918–27.CrossRefGoogle ScholarPubMed
Trivisano, M, Specchio, N. The role of PCDH19 in refractory status epilepticus. Epilepsy Behav. 2019;101(xxxx):106539. https://doi.org/10.1016/j.yebeh.2019.106539CrossRefGoogle ScholarPubMed
Higurashi, N, Takahashi, Y, Kashimada, A, et al. Immediate suppression of seizure clusters by corticosteroids in PCDH19 female epilepsy. Seizure. 2015;27:15. http://dx.doi.org/10.1016/j.seizure.2015.02.006.CrossRefGoogle ScholarPubMed
Lappalainen, J, Chez, M, Sullivan, J, et al. A multicenter, open-label trial of ganaxolone in children with PCDH19 epilepsy (P5.236). Neurology. 2017;88(16 Supplement):P5.236. http://n.neurology.org/content/88/16_Supplement/P5.236.abstract.CrossRefGoogle Scholar
Sadleir, LG, Kolc, KL, King, C, et al. Levetiracetam efficacy in PCDH19 girls clustering epilepsy. Eur J Paediatr Neurol. 2020;24:142–7. https://doi.org/10.1016/j.ejpn.2019.12.020.CrossRefGoogle ScholarPubMed
Dibbens, LM, et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet. 2008;40(16):776–81.CrossRefGoogle Scholar
Wong, BKY, Sutton, VR. Aicardi syndrome, an unsolved mystery: Review of diagnostic features, previous attempts, and future opportunities for genetic examination. Am J Med Genet Part C Semin Med Genet. 2018;178(4):423–31.Google ScholarPubMed
Sutton, VR, Hopkins, BJ, Eble, TN, et al. Facial and physical features of Aicardi syndrome: Infants to teenagers. 2005;258:254–8.Google Scholar
Grosso, S, Farnetani, MA, Bernardoni, E, Morgese, G, Balestri, P. Intractable reflex audiogenic seizures in Aicardi syndrome. Brain Dev. 2007;29(4):243–6.CrossRefGoogle ScholarPubMed
Bernstock, JD, Olsen, HE, Segar, D, et al. Corpus callosotomy for refractory epilepsy in Aicardi syndrome: A case report and focused review of the literature. World Neurosurg. 2020. https://doi.org/10.1016/j.wneu.2020.06.230.CrossRefGoogle Scholar
Glasmacher, MAK, Sutton, VR, Hopkins, B, et al. Phenotype and management of Aicardi syndrome: New findings from a survey of 69 children. J Child Neurol. 2007;22(2):176–84.CrossRefGoogle ScholarPubMed
Hopkins, B, Sutton, VR, Lewis, RA, Van den Veyver, I. Neuroimaging aspects of Aicardi syndrome. Am J Med Genet. 2008;146A(22):2871–8.CrossRefGoogle ScholarPubMed
Ohtsuka, Y, Oka, E, Terasaki, T, Ohtahara, S. Aicardi syndrome: A longitudinal clinical and electroencephalographic study. Epilepsia. 1993;34(4):627–34.CrossRefGoogle ScholarPubMed
Brodie, MJ. Modern management of juvenile myoclonic epilepsy. Expert Rev Neurother. 2016;16(6):681–8.CrossRefGoogle ScholarPubMed
Martínez-Juárez, IE, Alonso, ME, Medina, MT, et al. Juvenile myoclonic epilepsy subsyndromes: Family studies and long-term follow-up. Brain. 2006;129(5):1269–80.CrossRefGoogle ScholarPubMed
Camfield, CS, Camfield, PR. Juvenile myoclonic epilepsy 25 years after seizure onset: A population-based study. Neurology. 2009;73(13):1041–5.CrossRefGoogle ScholarPubMed
Woermann, FG, Free, SL, Koepp, MJ, Sisodiya, SM, Duncan, JS. Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. Brain. 1999;122(11):2101–7.CrossRefGoogle ScholarPubMed
O’Muircheartaigh, J, Vollmar, C, Barker, GJ, et al. Focal structural changes and cognitive dysfunction in juvenile myoclonic epilepsy. Neurology. 2011;76(1):3440.CrossRefGoogle ScholarPubMed
Alfradique, I, Vasconcelos, MM. Juvenile myoclonic epilepsy. Arq Neuropsiquiatr. 2007;65(4 B):1266–71.CrossRefGoogle ScholarPubMed
Baykan, B, Wolf, P Juvenile myoclonic epilepsy as a spectrum disorder: A focused review. Seizure. 2017;49:3641. http://dx.doi.org/10.1016/j.seizure.2017.05.011.CrossRefGoogle ScholarPubMed
Berkovic, SF, Howell, RA, Hay, DA, Hopper, JL. Epilepsies in twins: Genetics of the major epilepsy syndromes. Ann Neurol. 1998;43(4):435–45.CrossRefGoogle ScholarPubMed
Dos Santos, BP, Marinho, CRM, Marques, TEBS, et al. Genetic susceptibility in juvenile myoclonic epilepsy: Systematic review of genetic association studies. PLoS One. 2017;12(6):117.Google Scholar
Haug, K, Warnstedt, M, Alekov, AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet. 2003;33(4):527–32.CrossRefGoogle ScholarPubMed
Helbig, I, Hartmann, C, Mefford, HC. The unexpected role of copy number variations in juvenile myoclonic epilepsy. Epilepsy Behav. 2013;28(1):S66–8. http://dx.doi.org/10.1016/j.yebeh.2012.07.005.CrossRefGoogle ScholarPubMed
Qaiser, F, Yuen, RKC, Andrade, DM Genetics of epileptic networks: From focal to generalized genetic epilepsies. Curr Neurol Neurosci Rep. 2020;20(10):46. https://doi.org/10.1007/s11910-020-01059-x.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×