Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T22:27:44.559Z Has data issue: false hasContentIssue false

7 - Wood ant foraging and mutualism with aphids

Published online by Cambridge University Press:  05 June 2016

Timo Domisch
Affiliation:
NaturalResources Institute Finland (Luke),Management and Production of Renewable Resources, Joensuu, Finland
Anita C. Risch
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
Elva J.H. Robinson
Affiliation:
University of York, Heslington, York,UK
Jenni A. Stockan
Affiliation:
The James Hutton Institute
Elva J. H. Robinson
Affiliation:
University of York
Get access

Summary

Wood ants are almost unique among insects in having a largely predictable and easily visible pattern of foraging. This is the result of their mutualistic interaction with tree-dwelling aphids and other sap-sucking insects, requiring foragers to travel regularly between the wood ant nest and persistent feeding sites where they collect honeydew from their mutualists. Collected honeydew, and also prey, are shared with nestmates back at the nest; this broadly follows a ‘central-place foraging’ model. Wood ants forage predominately on tree trunks and in tree canopies. The success of wood ants is due, in part, to their highly effective foraging strategy: workers dominate a territory and the food resources in it. For these reasons, foraging behaviour has been a major theme in wood ant research over recent decades.

This chapter reviews the wood ant diet including the mutualism with aphids and other insects, and explores the consequences of this mutualism for host trees and other invertebrates. As in most social insects, only workers forage, but among workers there are further distinctions as to who forages, when they forage, and how they navigate between nest and foraging site. How resources are exploited and transported within wood ant territories, especially for polydomous colonies, provides an insight into how decentralised networks can function efficiently, making wood ants a good case study for transportation networks more generally.

Wood ant diet

Wood ants are omnivorous, thus they practically eat ‘everything’. Generally, two main sources form their diet: honeydew is used mainly as energy for metabolic maintenance, whereas insect prey and scavenged material is used to provide protein for rearing the brood (Lange 1960). In addition, minor contributions are made by the collection of seeds and the consumption of tree sap and berry juices (Wellenstein 1952; Rosengren and Sundström 1991; Otto 2005).

Honeydew forms the largest component of the wood ant diet, estimated as contributing between 62% (Wellenstein 1952) and 94% (Rosengren and Sundström 1991) of food brought into a nest (Figure 7.1). Estimates of the quantity of honeydew collected annually per wood ant nest vary greatly depending on ant species and location, and presumably also on the study methods.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, F. J., López, F. and Serrano, J. M. (1993) Branching angles of ant trunk trails as an optimization cue. Journal of Theoretical Biology 160: 297–310.Google Scholar
Adlung, K. G. (1966) A critical evaluation of the European research on use of red wood ants (Formica rufa group) for the protection of forests against harmful insects. Zeitschrift für angewandte Entomologie 57: 167–189.Google Scholar
Ayre, G. L. (1959) Food habits of Formica subnitens Creighton (Hymenoptera: Formicidae) at Westbank, British Columbia. Insectes Sociaux 6: 105–114.Google Scholar
Bernstein, S. and Bernstein, R. A. (1969) Relationships between foraging efficiency and the size of the head and component brain and sensory structures in the red wood ant. Brain Research 16: 85–104.Google Scholar
Beugnon, G. and Fourcassié, V. (1988) How do red wood ants orient during diurnal and nocturnal foraging in a three dimensional system? II. Field experiments. Insectes Sociaux 35: 106–124.Google Scholar
Billick, I., Hammer, S., Reithel, J. S. and Abbot, P. (2007) Ant–aphid interactions: are ants friends, enemies, or both?Annals of the Entomological society of America 100: 887–892.Google Scholar
Bradley, G. (1973) Effect of Formica obscuripes (Hymenoptera: Formicidae) on the predator–prey relationship between Hyperaspis congressis (Coleoptera: Coccinellidae) and Toumeyella numismaticum (Homoptera: Coccidae). The Canadian Entomologist 105: 1113–1118.Google Scholar
Bradley, G. A. and Hinks, J. D. (1968) Ants, aphids, and jack pine in Manitoba. The Canadian Entomologist 100: 40–50.Google Scholar
Breen, J. (1979) Aphids visited by Formica lugubris (Hymenoptera: Formicidae) including eleven species new to Ireland. Irish Naturalists' Journal 19: 349–352.Google Scholar
Breen, J. (2014) Species dossier, range and distribution data for the Hairy Wood Ant, Formica lugubris, in Ireland. Irish Wildlife Manuals 68.Google Scholar
Breen, J. A. G. (1976) Studies on Formica lugubris Zetterstedt in Ireland (Hymenoptera, Formicidae). PhD thesis, University College Cork.
Brightwell, B. and Dransfield, B. (2015) Aphid identification. Available at: http://influentialpoints.com/Gallery/Aphid_genera.htm.
Bruns, H. (1954) Beobachtungen zum Verhalten (insbesondere Tagesrhythmus) der Roten Waldameise (Formica rufa) während des Nahrungserwerbes. Zeitschrift für Tierpsychologie 11: 151–154.Google Scholar
Buhl, J., Hicks, K., Miller, E. R., et al. (2009) Shape and efficiency of wood ant foraging networksBehavioral Ecology and Sociobiology 63: 451–460.Google Scholar
Çamlitepe, Y. and Stradling, D. J. (1995) Wood ants orient to magnetic fields. Proceedings of the Royal Society B: Biological Sciences 261: 37–41.Google Scholar
Cherix, D. and Gris, G. (1980) Relations and aggressivity in Formica lugubris Zett in the Swiss Jura. Insectes Sociaux 27: 277–278.Google Scholar
Cherix, D., Freitag, A. and Maeder, A. (2006) Fourmis des bois. Lausanne, Switzerland: Musee de Zoologie.
Clark, W. H. and Blom, P. E. (2007) Annotated checklist of the ants of the Idaho National Laboratory (Hymenoptera: Formicidae). Sociobiology 49: 1–117.Google Scholar
Collett, T. S., Graham, P. and Harris, R. A. (2007) Novel landmark-guided routes in ants. Journal of Experimental Biology 210: 2025–2032.Google Scholar
Cook, Z., Franks, D. W. and Robinson, E. J. H. (2014) Efficiency and robustness of ant colony transportation networks. Behavioral Ecology and Sociobiology 68: 509–517.Google Scholar
Cosens, D. and Toussaint, N. (1985) An experimental study of the foraging strategy of the wood ant Formica aquilonia. Animal Behaviour 33: 541–552.Google Scholar
Cosens, D. and Toussaint, N. (1986) The dynamic nature of the activities of the wood ant Formica aquilonia foraging to static food resource within a laboratory habitat. Physiological Entomology 11: 383–395.Google Scholar
Cushman, J. H. and Whitham, T. G. (1989) Conditional mutualism in a membracid–ant association: temporal, age-specific, and density-dependent effects. Ecology 70: 1040–1047.Google Scholar
Denny, A. J., Wright, J. and Grief, B. (2001) Foraging efficiency in the wood ant, Formica rufa: is time of the essence in trail following?Animal Behaviour 62: 139–146.Google Scholar
Dixon, A. F. G. (1971) The role of aphids in wood formation. I. The effect of the sycamore aphid, Dreopanosiphum platanoides (Schr.)(Aphididae), on the growth of sycamore, Acer pseudoplatanus (L.). Journal of Applied Ecology 8: 165–179.Google Scholar
Domisch, T., Finèr, L. and Neuvonen, S., et al. (2009) Foraging activity and dietary spectrum of wood ants (Formica rufa group) and their role in nutrient fluxes in boreal forests. Ecological Entomology 34: 369–377.Google Scholar
Domisch, T., Neuvonen, S., and Sundström, L., et al. (2011) Sources of variation in the incidence of ant–aphid mutualism in boreal forests. Agricultural and Forest Entomology 13: 239–245.Google Scholar
Driessen, G. J. J., Raalte, A. T. V. and Bruyn, G. J. D. (1984) Cannibalism in the red wood ant, Formica polyctena (Hymenoptera: Formicidae). Oecologia 63: 13–22.Google Scholar
Eaton, E. R. and Kaufman, K. (2007) Kaufman Field Guide to Insects of North America. Boston, MA: Houghton Mifflin Harcourt.
Ellis, S., Franks, D. W. and Robinson, E. J. H. (2014) Resource redistribution in polydomous ant nest networks: local or global?Behavioral Ecology 25: 1183–1191.Google Scholar
Ellis, S. and Robinson, E. J. H. (2014) Polydomy in red wood ants. Insectes Sociaux 61: 111–122.Google Scholar
Ellis, S. and Robinson, E. J. H. (2015) The role of non-foraging nests in polydomous wood ant colonies. PLoS One 10(10): e0138321.Google Scholar
Ellis, S. and Robinson, E. J. H. (2016) Inter-nest food sharing in wood ant colonies: resource redistribution behavior in a complex system. Behavioral Ecology 27(2): 660–668.Google Scholar
Elton, C. (1932) Territory among wood ants (Formica rufa L.) at Picket Hill. Journal of Animal Ecology 1: 69–76.Google Scholar
Finér, L., Jürgensen, M. F., Domisch, T., et al. (2013) The role of wood ants (Formica rufa group) in carbon and nutrient dynamics of a boreal Norway spruce forest ecosystem. Ecosystems 16: 196–208.Google Scholar
Fourcassié, V. (1991) Landmark orientation in natural situations in the red wood ant Formica lugubris Zett. (Hymenoptera Formicidae). Ethology Ecology and Evolution 3: 89–99.Google Scholar
Fox, R. C. and Griffith, K. H. (1977) Pine seedling growth loss caused by cinaran aphids (Cinara atlantica, Cinara watsoni) in South Carolina. Journal Georgia Entomological Society 12: 29–34.Google Scholar
Frouz, J., Rybníček, M., Cudlín, P. and Chmelíková, E. (2008) Influence of the wood ant, Formica polyctena, on soil nutrient and the spruce tree growth. Journal of Applied Entomology 132: 281–284.Google Scholar
Funkhouser, W. D. (1915) Life history of Vanduzea arquata Say (Membracidae). Psyche: A Journal of Entomology 22: 183–198.Google Scholar
Gordon, D. M., Rosengren, R. and Sundström, L. (1992) The allocation of foragers in red wood ants. Ecological Entomology 17: 114–120.Google Scholar
Graham, P. and Collett, T. S. (2002) View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. Journal of Experimental Biology 205: 2499–2509.Google Scholar
Graham, P., Fauria, K. and Collett, T. S. (2003) The influence of beacon-aiming on the routes of wood ants. Journal of Experimental Biology 206: 535–541.Google Scholar
Harris, R. A., Graham, P. and Collett, T. S. (2007) Visual cues for the retrieval of landmark memories by navigating wood ants. Current Biology 17: 93–102.Google Scholar
Henquell, D. (1976) Sur l'existence d'une piste chimique chez Formica polyctena dans des conditions de vie semi-naturelle. Insectes Sociaux 23: 577–583.Google Scholar
Herzig, J. (1938) Ameisen und Blattläuse. Zeitschrift für angewandte Entomologie 24: 367–435.Google Scholar
Higashi, S. (1974) Worker polyethism related with body size in a polydomous red wood ant, Formica (Formica) yessensis Forel. Journal of the Faculty of Science Hokkaido University Series ⅤI. Zoology 19: 695–705.Google Scholar
Hölldobler, B. (1980) Canopy orientation: a new kind of orientation in ants. Science 210: 86–88.Google Scholar
Hölldobler, B. and Lumsden, C. J. (1980) Territorial strategies in ants. Science 210: 732–739.Google Scholar
Horstmann, K. (1970) Untersuchungen über den Nahrungserwerb der Waldameisen Formica polyctena (Foerster) im Eichenwald I. Zusammensetzung der Nahrung, Abhängigkeit von Witterungsfaktoren und von der Tageszeit. Oecologia 5: 138–157.Google Scholar
Horstmann, K. (1972) Untersuchungen über den Nahrungserwerb der Waldameisen Formica polyctena (Foerster) im Eichenwald II. Zusammensetzung der Nahrung, Abhängigkeit von Jahresverlauf und vom Nahrungsangebot. Oecologia 8: 371–390.Google Scholar
Horstmann, K. (1973) Untersuchungen zur Arbeitsteilung unter den Außendienst‐arbeiterinnen der Waldameise Formica polyctena Foerster. Zeitschrift für Tierpsychologie 32: 532–543.Google Scholar
Horstman, K. (1974) Investigations on food consumption of red wood ants (Formica polyctena Foerster) in an oak forest. 3. Annual turnover. Oecologia 15: 187–204.Google Scholar
Horstmann, K. (1976) Über die Duftspur-orientierung bei Waldameisen (Formica polyctena Foerster). Insectes Sociaux 23: 227–242.Google Scholar
Horstmann, K. (1982) Die Energiebilanz der Waldameisen (Formica polyctena Foerster). Insectes Sociaux 23: 227–242.Google Scholar
Horstmann, K., Bitter, A. and Ulsamer, P. (1982) Nahrungsalarm bei Waldameisen (Formica polyctena Förster). Insectes Sociaux 29: 44–66.Google Scholar
Hoyt, E. (1997) The Earth Dwellers: Adventures in the Land of Ants. New York: Simon and Schuster.
Hübner, G. (2000) Differential interactions between an aphid endohyperparasitoid and three honeydew-collecting ant species: a field study of Alloxysta brevis (Thomson) (Hymenoptera: Alloxystidae). Journal of Insect Behavior 13: 771–784.Google Scholar
Inoue, M. (1970) Revision of the conifer aphid fauna of Japan (Homoptera, Lachnidae). Bulletin of the Forest Experiment Station, Meguro, Tokyo 228: 57–102.Google Scholar
Ivanov, A. O. and Tuzhilin, A. A. (1994) Minimal Networks: The Steiner Problem and its Generalizations, Boca Raton, FL: CRC Press.
Johansson, T. and Gibb, H. (2012) Forestry alters foraging efficiency and crop contents of aphid-tending red wood ants, Formica aquilonia. PLoS ONE 7: e32817.Google Scholar
Judd, S. P. D. and Collett, T. S. (1998) Multiple stored views and landmark guidance in ants. Nature 392: 710–714.Google Scholar
Kidd, N. A. C. and Tozer, D. J. (1985) The distribution of the large pine aphid, Cinara pinea (Mordv.) within the canopy of Scots pine, Pinus sylvestris L. Zeitschrift für angewandte Entomologie 99: 341–350.Google Scholar
Kilpeläinen, J., Finér, L., Neuvonen, S., et al. (2009) Does the mutualism between wood ants (Formica rufa group) and Cinara aphids affect Norway spruce growth?Forest Ecology and Management 257: 238–243.Google Scholar
Klimetzek, D. and Wellenstein, G. (1978) Assimilateentzug und Zuwachsminderung an Forstpflanzen durch Baumläuse (Lachnidae) unter dem Einfluß von Waldameisen (Formicidae). Forstwissenschaftliches Centralblatt 97: 1–12.Google Scholar
Laine, K. J. and Niemelä, P. (1980) The influence of ants on the survival of mountain birches during an Oporinia autumnata (Lep., Geometridae) outbreak. Oecologia 47: 39–42.Google Scholar
Lamb, A. E. and Ollason, J. G. (1993) Foraging wood-ants Formica aquilonia Yarrow (Hymenoptera: Formicidae) tend to adopt the ideal free distribution. Behavioural Processes 28: 189.Google Scholar
Lamb, A. E. and Ollason, J. G. (1994) Site fidelity in foraging red wood-ants Formica aquilonia Yarrow and its influence on the distribution of foragers in a regeneration environment. Behavioural Processes 31: 309–321.Google Scholar
Lange, R. (1960) Über die Futterweitergabe zwischen Angehörigen verschiedener Waldameisen. Zeitschrift für Tierpsychologie 17: 389–401.Google Scholar
Lange, R. (1967) Die Nahrungsverteilung under den Arbeiterinnen des Waldameisenstaates. Zeitschrift für Tierpsychologie 24: 513–545.Google Scholar
Larsson, S. (1985) Seasonal changes in the within-crown distribution of the aphid Cinara pini on Scots pine. Oikos 45: 217–222.Google Scholar
Lenoir, L. (2003) Response of the foraging behaviour of red wood ants (Formica rufa group) to exclusion from trees. Agricultural and Forest Entomology 5: 183–189.Google Scholar
Lent, D. D., Graham, P. and Collett, T. S. (2009) A motor component to the memories of habitual foraging routes in wood ants?Current Biology 19: 115–121.Google Scholar
Lent, D. D., Graham, P. and Collett, T. S. (2013) Phase-dependent visual control of the zigzag paths of navigating wood ants. Current Biology 23: 2393–2399.Google Scholar
Lodhi, A. Q. K. and Sudd, J. H. (1980) The distribution of wood ant nests and their seasonal aboveground activity in a part of a north Yorkshire forest. Pakistan Journal of Zoology 12: 39–45.Google Scholar
Mabelis, A. A. (1979) Nest splitting by the red wood ant (Formica polyctena Foerster). Netherlands Journal of Zoology 29: 109–125.Google Scholar
Madder, M. C. A. (1978) Some ant–aphid associations in Manitoba with observations on interactions between Formica oreas comptula Wheeler and aphids at Birds Hill Park, Manitoba. MSc thesis, University of Manitoba.
Mahdi, T. and Whittaker, J. B. (1993) Do birch trees (Betula pendula) grow better if foraged by wood ants?Journal of Animal Ecology 62: 101–116.Google Scholar
Maňák, V., Nordenhem, H., Björklund, N., Lenoir, L. and Nordlander, G. (2013) Ants protect conifer seedlings from feeding damage by the pine weevil Hylobius abietis. Agricultural and Forest Entomology 15: 98–105.Google Scholar
McIver, J. D. and Loomis, C. (1993) A size-distance relation in Homoptera-tending thatch ants (Formica obscuripes, Formica planipilis). Insectes Sociaux 40: 207–218.Google Scholar
Morales, M. A. (2000a) Mechanisms and density dependence of benefit in an ant-membracid mutualism. Ecology 81: 482–489.Google Scholar
Morales, M. A. (2000b) Survivorship of an ant‐tended membracid as a function of ant recruitment. Oikos 90: 469–476.Google Scholar
Müller, H. (1956a) Der Massenwechsel einiger Honigtau liefernden Baumläuse im Jahre 1954. Insectes Sociaux 3: 75–91.Google Scholar
Müller, H. (1956b) Können Honigtau liefernde Baumläuse (Lachnidae) ihre Wirtspflanzen schädigen?Zeitschrift für angewandte Entomologie 39: 168–177.Google Scholar
Müller, H. (1958) Zur Kenntnis der Schäden, die Lachniden an ihren Wirtsbäumen hervorrufen können. Zeitschrift für angewandte Entomologie 42: 284–291.Google Scholar
Müller, H. (1961) Vorausschau und Erkundung von Waldtrachten. Symposia Genetica et Biologica Italica 11: 85–103.Google Scholar
Nielsen, C., Agrawal, A. A. and Hajek, A. E. (2009) Ants defend aphids against lethal disease. Biology Letters 6: 205–208.Google Scholar
North, R. (1993) Entrainment of the circadian rhythm of locomotor activity in wood ants by temperature. Animal Behaviour 45: 393–397.Google Scholar
Novak, H. (1994) The influence of ant attendance on larval parasitism in hawthorn psyllids (Homoptera: Psyllidae). Oecologia 99: 72–78.Google Scholar
Novgorodova, T. A. (2005) Ant–aphid interactions in multispecies ant communities: some ecological and ethological aspects. European Journal of Entomology 102: 495–501.Google Scholar
Økland, F. (1930) Wieviel ‘Blattlauszucker’ verbraucht die rote Waldameise (Formica rufa)?Biologisches Zentralblatt 50: 449–459.Google Scholar
Otto, D. (1958 )Über die Arbeitsteilung im Staate von Formica rufa rufo-pratensis minor Gössw. und ihre Verhaltensphysiologischen Grundlagen: Ein Beitrag zur Biologie der Roten Waldameise. Berlin: Akademie Verlag.
Otto, D. (2005) Die Roten Waldameisen. Hohenwarsleben, Germany: Westarp Wissenschaften.
Pati, A. J. (2014) A qualitative and quantitative assessment and narrative of Formica mounding behaviors influencing litter decomposition in a dry, interior Douglas-fir forest in British Columbia. MSc thesis, University of British Colombia.
Pisarski, B. and Vepsäläinen, K. (1989) Competition Hierarchies in Ant Communities (Hymenoptera, Formicidae). Poland: Państwowe Wydawnictwo Naukowe.
Punttila, P., Niemelä, P. and Karhu, K. (2004) The impact of wood ants (Hymenoptera : Formicidae) on the structure of invertebrate community on mountain birch (Betula pubescens ssp. czerepanovii). Annales Zoologici Fennici 41: 429–446.Google Scholar
Reznikova, Z. (2011) Division of labour and communication at the individual level in highly social Formica ants (Hymenoptera, Formicidae). Russian Entomological Journal 20: 315–319.Google Scholar
Robinson, E. J. H. (2014) Polydomy: the organisation and adaptive function of complex nest systems in ants. Current Opinion in Insect Science 5: 37–43.Google Scholar
Robinson, E. J. H., Tofilski, A. and Ratnieks, F. L. W. (2008) The use of native and non-native tree species for foraging and nesting habitat by the wood-ant Formica lugubris (Hymenoptera: Formicidae). Myrmecological News 11: 1–7.Google Scholar
Rosengren, R. (1971) Route fidelity, visual memory and recruitment behaviour in foraging wood ants. Acta Zoologica Fennica 133: 1–106.Google Scholar
Rosengren, R. (1977a) Foraging strategy of wood ants (Formica rufa group) I. Age polyethism and topographic traditions. Acta Zoologica Fennica 150: 1–30.Google Scholar
Rosengren, R. (1977b) Foraging strategy of wood ants (Formica rufa group). II. Nocturnal orientation and diel periodicity. Acta Zoologica Fennica 150: 1–30.Google Scholar
Rosengren, R. and Fortelius, W. (1986) Light: dark-induced activity rhythms in Formica ants (Hymenoptera: Formicidae). Entomologia Generalis 11: 221–228.Google Scholar
Rosengren, R. and Pamilo, P. (1978) Effect of winter timber felling on behaviour of foraging wood ants (Formica rufa group) in early spring. Memorabilia Zoologica 29: 143–155.Google Scholar
Rosengren, R. and Sundström, L. (1987) The foraging system of a red wood ant colony (Formica s. str.) – collecting and defending food through an extended phenotype. In Pasteels, J. M. and Deneubourg, J. L. (eds), From Individual to Collective Behavior in Social Insects. Basel, Switzerland: Birkhäuser Verlag, pp. 117–137.
Rosengren, R. and Sundström, L. (1991) The interaction between red wood ants Cinara aphids, and pines. A ghost of mutualism past. In Huxley, C. R. and Culter, D. F. (eds), Ant–Plant Interactions. Oxford, UK: Oxford Scientific Publications, pp. 80–91.
Rosengren, R., Vepsäläinen, K. and Wuorenrinne, H. (1979) Distribution, nest densities, and ecological significance of wood ants (the Formica rufa group) in Finland. Bulletin SROP 2–3: 181–213.Google Scholar
Ruppertshofen, H. (1979) Langjährige Erfahrungen über die Auswirkungen der Waldameisen und ihres Lachnidenbesuches auf das Baumwachstum; dazu Beziehungen zwischen Waldameisen und Waldhonigtracht, Borkenkäfern, Wild und Vögeln, nebst Bemerkungen zur Varros-Milbe. Waldhygiene 13: 109–120.Google Scholar
Salo, O. and Rosengren, R. (2001) Memory of location and site recognition in the ant Formica uralensis (Hymenoptera : Formicidae). Ethology 107: 737–752.Google Scholar
Savolainen, R. and Vepsäläinen, K. (1989) Niche differentiation of ant species within territories of the wood ant Formica polyctena. Oikos 56: 3–16.Google Scholar
Scheurer, S. (1964) Zur Biologie einiger Fichten bewohnenden Lachnidenarten (Homoptera, Aphidina). Zeitschrift für angewandte Entomologie 53: 153–178.Google Scholar
Scheurer, S. (1993) Die Bedeutung der Formiciden für die Lachniden. Ameisenschutz Aktuell 7: 69–75.Google Scholar
Schmutterer, H. (1958) Zur forstlichen Bedeutung der Nadelholz-Lachniden (Homopt.: Aphid.: Lachnidae). Anzeiger für Schädlingskunde 31: 38–40.Google Scholar
Seibert, T. F. (1992) Mutualistic interactions of the aphid Lachnus allegheniensis (Homoptera: Aphididae) and its tending ant Formica obscuripes (Hymenoptera: Formicidae). Annals of the Entomological Society of America 85: 173–178.Google Scholar
Sipura, M. (2000) Herbivory on willows: abiotic constraints and trophic interactions. PhD, University of Joensuu.
Sipura, M. (2002) Contrasting effects of ants on the herbivory and growth of two willow species. Ecology 83: 2680–2690.Google Scholar
Skinner, G. J. (1980a) Territory, trail structure and activity patterns in the wood-ant, Formica rufa (Hymenoptera: Formicidae) in limestone woodland in north-west England. Journal of Animal Ecology 49: 381–394.Google Scholar
Skinner, G. J. (1980b) The feeding habits of the wood ant, Formica rufa (Hymenoptera, Formicidae), in Limestone woodland in north-west England. Journal of Animal Ecology 49: 417–433 590.5.Google Scholar
Skinner, G. J. and Whittaker, J. B. (1981) An experimental investigation of inter-relationships between the wood ant (Formica rufa) and some tree-canopy herbivores. Journal of Animal Ecology 50: 313–326.Google Scholar
Smith, J. and Schowalter, T. (2001) Aphid‐induced reduction of shoot and root growth in Douglas‐fir seedlings. Ecological Entomology 26: 411–416.Google Scholar
Sörensen, U. and Schmidt, G. H. (1987) Vergleichende Untersuchungen zum Beuteeintrag der Waldameisen (Genus: Formica, Hymenoptera) in der Bredstedter Geest (Schleswig‐Holstein). Journal of Applied Entomology 103: 153–177.Google Scholar
Sorvari, J. (2009) Foraging distances and potentiality in forest pest insect control: an example with two candidate ants (Hymenoptera: Formicidae). Myrmecological News 12: 211–215.Google Scholar
Stadler, B. and Dixon, A. F. G. (2005) Ecology and evolution of aphid–ant interactions. Annual Review of Ecology Evolution and Systematics 36: 345–372.Google Scholar
Stradling, D. J. (1978) Food and feeding of ants. In Brian, M.V. (ed.), Production Ecology of Ants and Termites. Cambridge, UK: Cambridge University Press, pp. 81–106.
Stephens, D. W., Brown, J. S. and Ydenberg, R. C. (2008) Foraging: Behaviour and Ecology. Chicago, IL: University of Chicago Press.
Sudd, J. H. (1983) The distribution of foraging wood-ants (Formica lugubris Zett) in relation to the distribution of aphids. Insectes Sociaux 30: 298–307.Google Scholar
Sudd, J. H. and Sudd, M. E. (1985) Seasonal changes in the response of wood ants (Formica lugubris) to sucrose baits. Ecological Entomology 10: 89–97.Google Scholar
Tanner, C. J. (2006) Numerical assessment affects aggression and competitive ability: a team-fighting strategy for the ant Formica xerophila. Proceedings of the Royal Society of London Series B 273: 2737–2742.Google Scholar
Tanner, C. J. (2008) Resource characteristics and competition affect colony and individual foraging strategies of the wood ant Formica integroides. Ecological Entomology 33: 127–136.Google Scholar
Webster, R. P. and Nielsen, M. C. (1984) Myrmecophily in the Edward's hairstreak butterfly Satyrium edwardsii (Lycaenidae). Journal of the Lepidopterists' Society 38: 124–133.Google Scholar
Wellenstein, G. (1952) Zur Ernahrungsbiologie der Roten Waldameise. Zeitschrift für Pflanzenkrankheiten, Pflanzenpathologie und Pflanzenschutz 59: 430–445.Google Scholar
Wellenstein, G. (1954) Die Insektenjagd der Roten Waldameise. Zeitschrift für Angewandte Entomologie 36: 185–217.Google Scholar
Wellenstein, G. (1957) Die Beeinflussung der forstlichen Arthropodenfauna durch Waldameisen (Formica rufa Gruppe), I. Teil. Zeitschrift für angewandte Entomologie 41: 368–385.Google Scholar
Wellenstein, G. (1980) Auswirkung hügelbauender Waldameisen der Formica rufa‐Gruppe auf forstschädliche Raupen und das Wachstum der Waldbäume. Zeitschrift für angewandte Entomologie 89: 144–157.Google Scholar
Wesselinoff, G. and Horstmann, K. (1968) Vergleichende qualitative Untersuchungen über die Beute der Ameisenarten Formica polyctena Foerster und Coptoformica exsecta (Nylander). Waldhygiene 7: 220–226.Google Scholar
Wheeler, G. C. and Wheeler, J. N. (1986) The Ants of Nevada. Los Angeles, CA: Natural History Museum of Los Angeles County.
Whittaker, J. B. (1991) Effect of ants on temperate woodland trees. In Huxley, C. R. and Culter, D. F. (eds), Ant–Plant Interactions. Oxford, UK: Oxford Science Publications, pp. 67–79.
Whittaker, J. B. and Warrington, S. (1985) An experimental field study of different levels of insect herbivory induced by Formica rufa predation on sycamore (Acer pseudoplatanus) III. Effects on tree growth. Journal of Applied Ecology 22: 797–811.Google Scholar
Wilkinson, R. C., Bhatkar, A. P., Kloft, W. J., Whitcomb, W. H. and Kloft, E. S. (1978) Formica integra 2. Feeding, trophallaxis, and interspecific confrontation behavior. Florida Entomologist 61: 179–187.Google Scholar
Wimp, G. M. and Whitham, T. G. (2001) Biodiversity consequences of predation and host plant hybridization on an aphid–ant mutualism. Ecology 82: 440–452.Google Scholar
Wright, P. J., Bonser, R. and Chukwu, U. O. (2000) The size-distance relationship in the wood ant Formica rufa. Ecological Entomology 25: 226–233.Google Scholar
Wyckhuys, K. A. G., Koch, R. L., Kula, R. R. and Heimpel, G. E. (2009) Potential exposure of a classical biological control agent of the soybean aphid, Aphis glycines, on non-target aphids in North America. Biological Invasions 11: 857–871.Google Scholar
Yao, I. (2014) Costs and constraints in aphid-ant mutualism. Ecological Research 29: 383–391.Google Scholar
Yao, I. and Akimoto, S.-I. (2002) Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecological Entomology 27: 745–752.Google Scholar
Zakharov, A. A. (1980) Observer ants: storers of foraging area information in Formica rufa L. (Formicidae, Hymenoptera). Insectes Sociaux 27: 203–211.Google Scholar
Zakharov, A. A. and Zakharov, R. A. (2014) Ants under the conditions of an extremely hot summer. Entomological Review 94: 526–540.Google Scholar
Zoebelein, G. (1954) Versuche zur Feststellung des Honigtauertrages von Fichtenbeständen mit Hilfe von Waldameisen. Zeitschrift für angewandte Entomologie 36: 358–362.Google Scholar
Zoebelein, G. (1956) Der Honigtau als Nahrung der Insekten: Teil I. Zeitschrift für angewandte Entomologie 38: 369–416.Google Scholar
Zoebelein, G. (1957) Die Rolle des Waldhonigtaus im Nahrungshaushalt forstlich nützlicher Insekten. Forstwissenschaftliches Centralblatt 76: 24–34.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×