No CrossRef data available.
Article contents
Almost sure central limit theorems in stochastic geometry
Published online by Cambridge University Press: 24 September 2020
Abstract
We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals arising in stochastic geometry. As a consequence, we provide almost sure central limit theorems for (i) the total edge length of the k-nearest neighbors random graph, (ii) the clique count in random geometric graphs, and (iii) the volume of the set approximation via the Poisson–Voronoi tessellation.
Keywords
MSC classification
Secondary:
60G55: Point processes
- Type
- Original Article
- Information
- Copyright
- © Applied Probability Trust 2020
References
Ambrosio, L., Fusco, N. and Pallara, D. (2000). Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York.Google Scholar
Azmoodeh, E. and Nourdin, I. (2019). Almost sure limit theorems on Wiener chaos: the non-central case. Electron. Commun. Prob. 24, 1–12.CrossRefGoogle Scholar
Bercu, B., Nourdin, I. and Taqqu, M. S. (2010). Almost sure central limit theorems on the Wiener space. Stoch. Proc. Appl. 120, 1607–1628.CrossRefGoogle Scholar
Berkes, I. and Csáki, E. (2001). A universal result in almost sure central limit theory. Stoch. Proc. Appl. 94, 105–134.CrossRefGoogle Scholar
Brosamler, G. (1988). An almost everywhere central limit theorem. Math. Proc. Camb. Phil. Soc. 104, 561–574.CrossRefGoogle Scholar
Chazottes, J. R. and Gouëzel, S. (2007). On almost sure versions of classical limit theorems for dynamical systems. 138, 195–234.CrossRefGoogle Scholar
Ibragimov, I. A. and Lifshits, M. A. (2000). On limit theorems of almost sure type. 44, 254–272.Google Scholar
Lachièze-Rey, R., Schulte, M. and Yukich, J. E. (2019). Normal approximation for stabilizing functionals. Ann. Appl. Prob. 29, 931–993.CrossRefGoogle Scholar
Last, G. and Penrose, M. D. (2011). Poisson process Fock space representation, chaos expansion and covariance inequalities. 150, 663–690.CrossRefGoogle Scholar
Last, G. and Penrose, M. D. (2017). Lectures on the Poisson Process. Cambridge University Press.CrossRefGoogle Scholar
Last, G., Peccati, G. and Schulte, M. (2014). Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. 165, 667–723.Google Scholar
Lévy, P. (1937). Théorie de l’addition des variables aléatoires. Gauthier-Villar, Paris.Google Scholar
Peligrad, M. and Shao, Q. M. (1995). A note on the almost sure central limit theorem for weakly dependent random variables. Statist. Prob. Lett. 22, 131–136.CrossRefGoogle Scholar
Penrose, M. D. (2003). Random Geometric Graphs. Oxford University Press, New York.CrossRefGoogle Scholar
Penrose, M. D. (2007). Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13, 1124–1150.CrossRefGoogle Scholar
Penrose, M. D. and Yukich, J. E. (2001). Central limit theorems for some graphs in computational geometry. Ann. Appl. Prob. 11, 1005–1041.Google Scholar
Penrose, M. D. and Yukich, J. E. (2013). Limit theory for point processes in manifolds. Ann. Appl. Prob. 23, 2161–2211.CrossRefGoogle Scholar
Reitzner, M., Spodarev, E. and Zhaporazhets, D. (2012). Set reconstruction by Voronoi cells. 44, 938–953.Google Scholar
Schatte, P. (1988). On strong versions of the central limit theorem. 137, 249–256.CrossRefGoogle Scholar
Schulte, M. (2012). A central limit theorem for the Poisson–Voronoi approximation. Adv. Appl. Math. 49, 285–306.CrossRefGoogle Scholar
Thäle, C. and Yukich, J. E. (2016). Asymptotic theory for statistics of the Poisson–Voronoi approximation. Bernoulli 22, 2372–2400.CrossRefGoogle Scholar
Yoshihara, K. I. (2004). Weakly dependent stochastic sequences and their applications. In Recent Topics on Weak and Strong Limit Theorems, Vol. XIV, Sanseido, Chiyoda.Google Scholar
Yukich, J. E. (2015). Surface order scaling in stochastic geometry. Ann. Appl. Prob. 25, 177–210.CrossRefGoogle Scholar
Zheng, C. (2011). Multi-dimensional Malliavin–Stein method on the Poisson space and its applications to limit theorems. Doctoral Thesis, Université Pierre et Marie Curie. Available at https://tel.archives-ouvertes.fr/tel-00648611/document.Google Scholar
Zheng, G. (2017). Normal approximation and almost sure central limit theorem for non-symmetric Rademacher functionals. Stoch. Proc. Appl. 127, 1622–1636.CrossRefGoogle Scholar