Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T05:36:44.648Z Has data issue: false hasContentIssue false

Provenance of Kanjera Fossils by X-Ray Fluorescence and Ion Microprobe Analyses

Published online by Cambridge University Press:  06 March 2019

A. M. Kinyua
Affiliation:
CNST, Faculty of Engineering University of Nairobi, P.O. Box 30197, Nairobi, Kenya
T. Plummer
Affiliation:
Department of Anthropology Yale University New Haven, CT 06520 U.S.A.
N. Shimizu
Affiliation:
Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole. MA 02543 U.S.A.
W. Melson
Affiliation:
Department of Mineral Sciences National Museum of Natural History Washington, D.C. 20560
R. Potts
Affiliation:
Department of Anthropology National Museum of Natural Hfstory Washington. D.C. 20560, U.S.A. and National Museums of Kenya P.O. Box 40658, Nairobi, Kenya
Get access

Abstract

XRF and Ion mfcroprobe analyses of fossils of known and uncertain provenance from the Lower-Middle Pleistocene locality of Kanjera. Kenya, are reported. The goal of this study was to develop a nondestructive technique of provenancixig fossils, which could be applied to the Kanjera sample. The fossils of known provenance were collected in the excavations of the 1987 Smithsonian Expedition. Three fossils of uncertain provenance, two specimens of Theropithecus oswaldi and a hominid fossil, were analyzed as test cases.

Both qualitative and quantitative XRF analyses of Kanjera fossils were carried out. In the qualitative analysis, the elemental peak areas from each fossil's XRF spectrum were calculated and normalized to the peak area of the incoherently scattered radiation. Results of the analysis showed that fossils from the Lower-Middle Pleistocene Kanjera Beds, for the most part, had higher levels of yttrium (Y) and zirconium (Zr) than those of the younger Apoko (Ap) Bed. black cotton soil (BCS) and modem bones (MD). The relative concentrations of uranium (U) v strontium (Sri and thorium (Th) were diagnostic of the Kanjera Bed of origin. These findings were confirmed by quantitative XRF and ion microprobe analyses of a subsample of Kanjera fossils. The T. oswaldi and hominid fossils had trace element concentrations suggestive of K2 and BCS provenances, respectively. These findings provide a framework for the qualitative XRF provenancing of other surface collected fossils from the locality.

Type
XIV. XRS Applications
Copyright
Copyright © International Centre for Diffraction Data 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barber, C., Lithns 7:5363 (1974).Google Scholar
2. Le Bas, M. J., “Carbonatite-nephelinite volcanism,” John Wiley and Sons, N.Y. (1977).Google Scholar
3. Hummer, T. W. and Potts, R.. J. Hum. Evol. 18:269276(1989).Google Scholar
4. Oswald, F.. Quart. J. Geol. Soc. Lond. 70:128188 (1914).Google Scholar
5. Leakey, L. S. B., “The Stone Age Races of Kenya,” Oxford University Press, London (1935).Google Scholar
6. Leakey, L. S. B., “Adams Ancestors,” Methuen, London (1954).Google Scholar
7. Leakey, L. S. B., Homo sapiens in the Middle Pleistocene and the evidence of Homo saniens’ evolution, in: The Origin of Homg sapiens.” F. Bordes, ed., UNESCO, Paris (1972).Google Scholar
8. Boswell, P. G. H., Nature 135: 371 (1935).10.1038/135371a0Google Scholar
9. Kent, P. E., geol. Mag., 79:117132(1942).Google Scholar
10. Pilbearn, D. R.. Hominid-bearing deposits at Kanjera, Nyanza Province, Kenya, unpublished report (1974).Google Scholar
11. Pickford, M., “Kenya Palaeontology Gazetteer,” National Museums of Kenya, Nairobi (1984).Google Scholar
12. Oaklev, K. P.. Bull. Brit, Mus. Nat. Hist, (Geol.) 34:163 (1980).Google Scholar
13. Henderson, P., Marlow, C. A., Molleson, T. I. and Williams, C. T. Nature 306, 355360 (1983).10.1038/306358a0Google Scholar
14. Williams, C. T. and Marlow, C. A.. J. Archaeol. gel. 14:297309 (1987).Google Scholar
15. WiHiams, C. T. and Potts, P. J.. Archaeometry 30:237247 (1988).Google Scholar
16. Potts, P. J., A Handbook of Silicate Rock Analysis, Chapman and Hall, N.Y. (1987).Google Scholar
17. Stewart, J, D., Fralick, P., Hancock, R. G. V., Kelley, J. H. and Garrett, E. M.. J . Archaeol Sci. 17:601625(1990).10.1016/0305-4403(90)90043-5Google Scholar
18. Wilson, A, L.. J. Archaeol. Sci. 5:219236 (1978).Google Scholar
19. Duerden, P., Cohen, D. D., Clayton, E., Bird, J. R., Ambrose, W. R., and Leach, B. F., Anal. Chem. 51:23502354 (1979).Google Scholar
20. Merrick, H. V. and Brown, F. H.. Afr. Archaeol. Rev. 2:129152 (1984).Google Scholar
21. Nelson, D. E., D'Auria, J. M., and Bennett, R. B., Archaeometry 17:8597 (1975).Google Scholar
22. Cerllng, T. E. and Brown, F, H., Nature 299:216221 (1982).10.1038/299216a0Google Scholar
23. Brown, F. H., McDougall, I., Davtes, T. and Maier, R., An integrated Plio-Pleistocene chronology for the Turkana Basin, In: “Ancestors: the Hard Evidence,” E. Delson, ed., Alan R. Liss. N.Y. (1985).Google Scholar
24. Andermann, G. and Kemp, J. W.. Anal. Chem. 30:13061309 (1958).10.1021/ac60140a001Google Scholar
25. Giauque, R. D., Giarett, R. B. and Goda, L. Y.. Anal. Chem. 49:511516(1979).10.1021/ac50040a014Google Scholar
26. Nielson, K. K.. Anal. Chem. 49:641648 (1977).Google Scholar
27. Lavi, M, M., M.Sc. Thesis, University of Nairobi (1986).Google Scholar
28. Kendall, D. S., Lowry, J. H., Bour, E. L., and Meszaros, T. J., Adv. X-Ray Anal. 27:4674723 (1984).Google Scholar
29. Smith, T. K.. Adv. X-Rav Anal. 27:467473 (1984).Google Scholar
30. Gigante, G. E., Pedraza, L. J and S. Sciutt. Nucl. Insr. Meth. Phys. Res. 312:229234 (1985).Google Scholar
31. Behrensmeyer, A. K., Potts, R., Plummerand, T. W. Tauxe, L. (in prep.).Google Scholar
32. Badone, E. and Farquhar, R. M.. J. Rad. Anal. Chem, 69:291311 (1982).Google Scholar
33. Kinyua, A. M., M.Sc. Thesis, University of Nairobi (1983).Google Scholar
34. Holynska, B., Spectrochim. Acta. 278: 287 (1972).10.1016/0584-8547(72)80060-0Google Scholar
35. Verbeke, P. and Adams, F.. Anal. Chim. Acta 109:8595(1979).Google Scholar
36. Leiser, R. H.. Anal. Chem. 307:177184 (1981).Google Scholar
37. Shlmlzu, N. and R, S. Hart. Ann. Rev. Earth Planet. Sci. 10:483526 (1982).Google Scholar
38. Grandjean, P.. Ph.D. Thesis, University of Nancy.Google Scholar
39. Haurl, pers. comm. (1990).Google Scholar
40. Plummer, T., Ph.D. Thesis, Yale University (1991).Google Scholar
41. Leakey, L. S. B.. J. E. Afr. Nat. Hist Soc. 17:3944 (1943).Google Scholar
42. Durrance, E. M.. “Radioactivity in Geology”, John Wiley and Sons, N.Y. (1986).Google Scholar
43. Woolley, A. R. and C. Kempe, D. R.. Carbonatites: nomenclature, average chemical compositions, and element distribution, in: “Carbonatites: Genesis and Evolution”, K.Bell, ed., Unwin Hyman, Boston, (1989).Google Scholar
44. Henderson, P.. Pickforri, M. and Williams, C. T.. J. Afr, Earth. Sci. 6: 221227 (1987).Google Scholar
45. Oakley, K. P.. J. Hum. Evol. 3:257258 (1974).10.1016/0047-2484(74)90184-5Google Scholar