Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T19:55:24.623Z Has data issue: false hasContentIssue false

Synchrotron Radiation X-Ray Fluorescence Analysis with a Crystal Spectrometer

Published online by Cambridge University Press:  06 March 2019

Kazutaka Ohashi
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering The University of Tokyo, Hongo, Bunkyoku, Tokyo 113, JAPAN
Mamoru Takahashl
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering The University of Tokyo, Hongo, Bunkyoku, Tokyo 113, JAPAN
Yohichi Gohshi
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering The University of Tokyo, Hongo, Bunkyoku, Tokyo 113, JAPAN
Atsuo Iida
Affiliation:
Photon Factory, National Laboratory for High Energy Physics 0-ho, Tsukubashi, Ibaraki 305, JAPAN
Shunji Eishimoto
Affiliation:
Photon Factory, National Laboratory for High Energy Physics 0-ho, Tsukubashi, Ibaraki 305, JAPAN
Get access

Abstract

A wavelength dispersive spectrometer which consists of a flat crystal analyser and a position sensitive proportional counter has been developed for X-ray fluorescence analysis using synchrotron radiation. The advantages of this spectrometer are high energy resolution, multielemental nature, and high efficiency, and these match well "with the high brightness synchrotron X-ray source. The minimum detection limits are of the order of ppm or pg. An application to elemental mapping has also been demonstrated. The present system is useful for practical analysis of small samples or small regions.

Type
XIII. XRS Techniques and Instrumentation
Copyright
Copyright © International Centre for Diffraction Data 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jones, K. W. and Gordon, B. M., Anal. Chem., 61, 341A (1989)Google Scholar
2. Hayakawa, S., Iida, A., Aoki, S. and Gohshi, Y., Rev. Sci. Instr., 60, 2452 (1989)10.1063/1.1140696Google Scholar
3. Sakurai, K., Iida, A. and Gohshi, I., Jpn. J.Appl.Phys., 26, 1937 (1987)Google Scholar
4. Iida, A., Adv. in X-ray Anal., 34, 23 (1991)Google Scholar
5. Iida, A. and Gohshi, Y., in “Handbook on synchrotron radiation” vol.4, p.307, eds. S. Ebashi, M. Koch and E. Rubenstein (North-Holland, Amsterdam, 1990 Google Scholar
6. Gilfrich, J. V., Skelton, E. F., Quadri, S. B., Kirkland, J. P. and Hagel, D. J., Anal. Chem., 55, 187 (1983).Google Scholar
7. Prins, M., Dries, W., Lenglet, W., Davies, S. T. and Bowen, K., Nucl.Instrum and Method, B10/11, 299 (1985).10.1016/0168-583X(85)90256-3Google Scholar
8. Iida, A., Gohshi, I. and Maeaawa, H., Adv. in X-ray Anal., 29, 427 (1986)Google Scholar
9. Chevalller, P., Jehanno, C., Maurette, M., Sutton, S. R. and Wang, J., J. Geophys. Res., 92, E649 (1987).10.1029/JB092iB04p0E649Google Scholar
10. Chevallier, P., de Physique, J., C9, 39 (1987)Google Scholar
11. Brennan, S., Cowan, P. L., Deslattes, R. D., Renins, A., Lindle, D. W. and Karlin, B. A., Rev. Sci. Instr., 60, 2243 (1989)Google Scholar
12. Deutsch, H. and Hart, M., Phy. Rev., B26, 5558 (1982)10.1103/PhysRevB.26.5558Google Scholar
13. Sakurai, K., Iida, A. and Gohshi, I., Anal. Sci., 4, 3 (1988).Google Scholar
14. Hayakawa, S., Gohshi, Y., Iida, A., Aoki, S. and Sato, K., Rev. Sci. Instr., in press.Google Scholar