Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T12:04:20.708Z Has data issue: false hasContentIssue false

Population viability analysis on a native Danish cattle breed

Published online by Cambridge University Press:  26 October 2016

Morten Hertz
Affiliation:
Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
Iben Ravnborg Jensen*
Affiliation:
Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
Laura Østergaard Jensen
Affiliation:
Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
Iben Vejrum Nielsen
Affiliation:
Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
Jacob Winde
Affiliation:
Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
Astrid Vik Stronen
Affiliation:
Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
Torsten Nygaard Kristensen
Affiliation:
Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
Cino Pertoldi
Affiliation:
Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark Aalborg Zoo, Aalborg, Denmark
*
Correspondence to: Iben Ravnborg Jensen, Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark. email: ibenravnborg@gmail.com
Get access

Summary

Many domestic breeds face challenges concerning genetic variability, because of their small population sizes along with a high risk of inbreeding. Therefore, it is important to obtain knowledge on their extinction risk, along with the possible benefits of certain breeding strategies. Since many domestic breeds face the same problems, results from such studies can be applied across breeds and species. Here a Population Viability Analysis (PVA) was implemented to simulate the future probability of extinction for a population of the endangered Danish Jutland cattle (Bos taurus), based on the software Vortex. A PVA evaluates the extinction risk of a population by including threats and demographic values. According to the results from the PVA the population will go extinct after 122 years with the current management. Four scenarios were created to investigate which changes in the breeding scheme would have the largest effect on the survival probabilities, including Scenario 1: More females in the breeding pool, scenario 2: More males in the breeding pool, scenario 3: Increased carrying capacity, and scenario 4: Supplementing males to the population through artificial insemination using semen from bulls used in the populations in past generations. All scenarios showed a positive effect on the population's probability of survival, and with a combination of the different scenarios, the population size seems to be stabilized.

Résumé

De nombreuses races domestiques font face à des défis liés à la variabilité génétique en raison de leur petite taille de population qui s'accompagne d'un risque élevé de consanguinité. Par conséquent, il s'avère important de connaître leur risque d'extinction, ainsi que les avantages potentiels de certaines stratégies de sélection. Vu que beaucoup de races domestiques confrontent les mêmes problèmes, les résultats de ces études peuvent être appliqués sans distinction de race ou d'espèce. Ici une Analyse de Viabilité des Populations (AVP) a été menée pour simuler, en utilisant le logiciel Vortex, la probabilité future d'extinction d'une population de bovins menacés: les bovins danois du Jutland (Bos taurus). Une AVP évalue le risque d'extinction d'une population en tenant compte des menaces et des données démographiques. D'après les résultats de l'AVP, la population s'éteindra après 122 ans avec la gestion actuelle. Quatre scénarios ont été présentés pour examiner quels changements dans le schéma de sélection auraient le plus grand effet sur les probabilités de survie, y compris le scénario 1: Plus de femelles dans le pool de reproducteurs, le scénario 2: Plus de mâles dans le pool de reproducteurs, le scénario 3: Une plus grande capacité porteuse et le scénario 4: Fournir des mâles à la population par le biais de l'insémination artificielle avec du sperme de taureaux utilisés dans les populations dans les générations passées. Tous les scénarios ont présenté un effet positif sur la probabilité de survie de la population et, avec une combinaison des différents scénarios, la taille de la population semble se stabiliser.

Resumen

Muchas razas domésticas se enfrentan a desafíos relacionados con la variabilidad genética, debido a su pequeño tamaño de población que se acompaña de un elevado riesgo de endogamia. Por ello, resulta importante conocer su riesgo de extinción, así como las posibles ventajas de ciertas estrategias de selección. Puesto que muchas razas domésticas comparten los mismos problemas, los resultados de dichos estudios pueden ser aplicados independientemente de la raza o la especie. En este caso, se llevó a cabo un Análisis de Viabilidad de Poblaciones (AVP) para simular, basándose en el programa Vortex, la probabilidad futura de extinción de una población de ganado bovino amenazado: el ganado danés de Jutlandia (Bos taurus). Un AVP evalúa el riesgo de extinción de una población teniendo en cuenta las amenazas y los datos demográficos. De acuerdo con los resultados del AVP, la población se extinguirá al cabo de 122 años con el manejo actual. Se plantearon cuatro escenarios para investigar qué cambios en el esquema de selección tendrían el mayor efecto sobre las probabilidades de supervivencia, incluyendo el escenario 1: Más hembras en el núcleo reproductor, el escenario 2: Más machos en el núcleo reproductor, el escenario 3: Una mayor capacidad de carga y el escenario 4: Aportar machos a la población mediante inseminación artificial con semen de toros empleados en las poblaciones en generaciones pasadas. Todos los escenarios presentaron un efecto positivo sobre la probabilidad de supervivencia de la población y, con una combinación de los diferentes escenarios, el tamaño de la población parece estabilizarse.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allendorf, F.W. & Ryman, N. 2002. The role of genetics in population viability analysis. In Beissinger, S.R. & McCullough, D.R., eds. Population viability analysis, pp. 5085. The University of Chicago Press.Google Scholar
Allendorf, F.W., Luikart, G. & Aitkin, S.N. 2012. Conservation of the genetics of populations, 2nd edition. Wiley.Google Scholar
Beissinger, S.R. & Westphal, M.I. 1998. On the use of demographic models of population viability in endangered species management. J. Wildlife Manage., 62: 821841.CrossRefGoogle Scholar
Brüniche-Olsen, A., Gravlund, P. & Lorenzen, E.D. 2012. Impacts of genetic drift and restricted gene flow in indigenous cattle breeds: evidence from the Jutland breed. Anim. Genet. Resour., 50: 7585.Google Scholar
chr.fvst.dk – Danish Veterinary and Food Administration. (Accessed on October 13, 2016). Google Scholar
Curry, M.R. 2000. Cryopreservation of semen from domestic livestock. Rev. Reprod., 5: 4652.CrossRefGoogle ScholarPubMed
Demontis, D., Larsen, P.F., Baekgaard, H., Sonderup, M., Hansen, B.K., Nielsen, V.H., Loeschcke, V., Zalewski, A., Zalewska, H. & Pertoldi, C. 2011. Inbreeding affects fecundity of American mink (Neovison vison) in Danish farm mink. Anim. Genet., 42: 437439.Google Scholar
Ejrnæs, R. & Buttenschøn, R. 2012. Hvordan sikrer vi græslandets og hedens biodiversitet. In Meltofte, H., ed. Danmarks natur frem mod 2020 – Om at stoppe tabet af biologisk mangfoldighed, pp. 4044. Copenhagen, Denmark, Det grønne kontaktudvalg.Google Scholar
Frankham, R., Ballou, J.D. & Briscoe, D.A. 2009. Introduction to conservation genetics, 2nd edition. New York, NY, Cambridge University Press.Google Scholar
García, R.R., Fraser, M.D., Celaya, R., Ferreira, L.M.M., García, U. & Osoro, K. 2013. Grazing land management and biodiversity in the Atlantic European heathlands: a review. Agroforest. Syst., 87: 1943.Google Scholar
Hartl, D.L. & Clark, A.G. 1989. Principles of population genetics, 2nd edition. Sinauer Associates.Google Scholar
Hiemstra, S.J., De Haas, Y., Mäki-Tanila, A. & Gandini, G. 2010. Local cattle breeds in Europe – development of policies and strategies for self-sustaining breeds. Wageningen Academic Publishers.CrossRefGoogle Scholar
Kristensen, T.N. & Sørensen, A.C. 2005. Inbreeding – lessons from animal breeding, evolutionary biology and conservation genetics. Anim. Sci., 80: 121133.Google Scholar
Kristensen, T.N., Hoffmann, A.A., Pertoldi, C. & Stronen, A.V. 2015. What can livestock breeders learn from conservation genetics and vice versa? Front. Genet., 6: 38.Google Scholar
Lacy, R.C. 1993. Vortex: a computer simulation model for population viability analysis. Wildlife Res., 20: 4565.CrossRefGoogle Scholar
Lacy, R.C. 1997. Importance of genetic variation to the viability of mammalian populations. J. Mammal., 78(2): 320335.Google Scholar
Leroy, G., Mary-Huard, T., Verrier, E., Danvy, S., Charvolin, E. & Danchin-Burge, C. 2013. Methods to estimate effective population size using pedigree data: examples in dog, sheep, cattle and horse. Genet. Sel. Evol., 45: 1.Google Scholar
Miller, P.S. & Lacy, R.C. 2005. Vortex: a stochastic simulation of the extinction process. Version 9.50 user's manual. Apple Valley, MN, Conservation Breeding Specialist Group (SSC/IUCN).Google Scholar
Mills, L.S. & Allendorf, F.W. 1996. The one-migrant-per-generation rule in conservation and management. Conserv. Biol., 10: 15091518.CrossRefGoogle Scholar
Nowak, R.M. 1999. Walker's mammals of the world, 6th edition. Vol. 2. The Johns Hopkins University Press.Google Scholar
Pertoldi, C., Purfield, D.C., Berg, P., Jensen, T.H., Bach, O.S., Vingborg, R. & Kristensen, T.N. 2014. Genetic characterization of a herd of the endangered Danish Jutland cattle. J. Anim. Sci., 92: 23722376.Google Scholar
Ralls, K., Ballou, J.D. & Templeton, A. 1988. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol., 2: 185193.Google Scholar
Reed, D.H., Fox, C.W., Enders, L.S. & Kristensen, T.N. 2012. Inbreeding-stress interactions: evolutionary and conservation consequences. Ann. N Y Acad. Sci., 1256: 3348.Google Scholar
Shaffer, M. 1987. Minimum viable populations: coping with uncertainty. In Soulé, M.E., ed. Viable populations for conservation, pp. 6986. Cambridge University Press.Google Scholar
Su, L., Yang, S., He, X., Li, X., Ma, J., Wang, Y., Presicce, G.A. & Ji, W. 2012. Effect of donor age on the development competence of bovine oocytes retrieved by ovum pick up. Reprod. Domest. Anim., 47: 184189.Google Scholar
Thirstrup, J.P., Bach, L.A., Loeschcke, V. & Pertoldi, C. 2009. Population viability analysis on domestic horse breeds (Equus caballus). J. Anim. Sci., 87: 35253535.Google Scholar