Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T18:02:11.870Z Has data issue: false hasContentIssue false

On eigensolutions of the one-speed neutron transport equation in plane geometry

Published online by Cambridge University Press:  17 February 2009

Nassar H. S. Haidar
Affiliation:
Lebanese NCSR Nuclear Research Centre and Department of Mathematics, American University of Beirut, Lebanon.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We revisit the singular eigensolution to the steady state one-speed transport equation for an isotropically scattering and multiplying heterogeneous slab. It is proved that this solution is a sum of Stieltjes integrals over the resolvent set of only the operator of multiplication by the angular variable.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Bartle, R. G., The elements of real analysis (Wiley, New York, 1964).Google Scholar
[2]Bell, G. I. and Glasstone, S., Nuclear reactor theory (Van Nostrand Reinhold, New York, 1970).Google Scholar
[3]Bilenko, V. I., “Applying summator operators to the computer solution of integrodiffer-ential equation of radiation transferSov. J. Atom. Energy 53 (1982) 800803.CrossRefGoogle Scholar
[4]Case, K. M. and Zweifel, P. F., Linear transport theory (Addison-Wesley, Massachusetts, 1967).Google Scholar
[5]Garabedian, P. R., Partial differential equations (Wiley, New York, 1964).Google Scholar
[6]Garcia, R. D. M. and Siewert, C. E., “Multislab multigroup transport theory with Lth order anisotropic scattering”, J. Comput. Phys. 50 (1983) 181192.CrossRefGoogle Scholar
[7]Haidar, N. H. S., “A coordinate transform method for one-speed neutron transport in composite slabs”, J. Phys. D: Appl. Phys 21 (1988) 15431549.CrossRefGoogle Scholar
[8]Kaper, H. G., Lekkerkerker, C. G. and Hejtmanek, J., Spectral methods in linear transport theory (Birkhauser Verlag, Basel, 1982).Google Scholar
[9]Kikuta, T., “Extensions of variational methods, I. Super-stationary variational method”, Prog. Theor. Phys. 14 (1955) 457472.CrossRefGoogle Scholar
[10]Kriese, J. T., Siewert, C. E. and Yener, Y., “Two-group critical problems for slabs and spheres in neutron-transport theory”, Nucl. Sci. Eng. 50 (1973) 39.CrossRefGoogle Scholar
[11]Lemanska, M., “On the analytic solutions of the monoenergetic neutron transport equation for slab geometry”, J. Appl. Math. Phys. 30 (1979) 655661.Google Scholar
[12]Pahor, S. and Shultis, J. K., “Half-space general multigroup transport theory”, J. Nucl. Energy 23 (1969) 477493.CrossRefGoogle Scholar
[13]Smirnov, V. I., A course of higher mathematics, Vol. 5 (Pergamon Press, Oxford, 1964).Google Scholar
[14]Siewert, C. E. and Benoit, P., “Multigroup transport theory, I. Basic analysis”, Nucl. Sci. Eng. 78 (1981) 311314.CrossRefGoogle Scholar
[15]Weinberger, H. F., Variational methods for eigenvalue approximation (SIAM, Philadelphia, 1974).CrossRefGoogle Scholar
[16]Williams, M. M. R., Mathematical methods in particle transport theory (Wiley Inter-science, London, 1971).Google Scholar