Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T04:50:54.505Z Has data issue: false hasContentIssue false

Differences in auditory timing between human and nonhuman primates

Published online by Cambridge University Press:  17 December 2014

Henkjan Honing
Affiliation:
Amsterdam Brain and Cognition, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands. honing@uva.nlhttp://www.mcg.uva.nl/hh/
Hugo Merchant
Affiliation:
Department of Cognitive Neuroscience, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquila, Querétaro, México. hugomerchant@unam.mxhttp://132.248.142.13/personal/merchant/members.html

Abstract

The gradual audiomotor evolution hypothesis is proposed as an alternative interpretation to the auditory timing mechanisms discussed in Ackermann et al.'s article. This hypothesis accommodates the fact that the performance of nonhuman primates is comparable to humans in single-interval tasks (such as interval reproduction, categorization, and interception), but shows differences in multiple-interval tasks (such as entrainment, synchronization, and continuation).

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cook, P., Rouse, A., Wilson, M. & Reichmuth, C. (2013) A California sea lion (Zalophus californianus) can keep the beat: Motor entrainment to rhythmic auditory stimuli in a non-vocal mimic. Journal of Comparative Psychology 127(4):412–27. doi: 10.1037/a0032345.Google Scholar
Fitch, W. T. (2013) Rhythmic syntax and rhythmic cognition in humans and animals: A computational and comparative perspective. Frontiers in Systems Neuroscience 7:68. doi: 10.3389/fnsys.2013.00068.Google Scholar
Grahn, J. A. & Brett, M. (2007) Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience 19(5):893906. doi: 10.1162/jocn.2007.19.5.893.Google Scholar
Hasegawa, A., Okanoya, K., Hasegawa, T. & Seki, Y. (2011) Rhythmic synchronization tapping to an audio–visual metronome in budgerigars. Scientific Reports 1(Article 120):18. (Online journal). doi:10.1038/srep00120.Google Scholar
Hattori, Y., Tomonaga, M. & Matsuzawa, T. (2013) Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Scientific Reports 3(Article 1566):16. (Online journal). doi: 10.1038/srep01566.CrossRefGoogle Scholar
Honing, H. (2012) Without it no music: Beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences 1252(1):8591. doi: 10.1111/j.1749-6632.2011.06402.x.Google Scholar
Honing, H., Bouwer, F. & Háden, G. P. (in press) Perceiving temporal regularity in music: The role of auditory event-related potentials (ERPs) in probing beat perception. In: Neurophysiology of temporal processing, ed. Merchant, H. & de Lafuente, V.. Springer.Google Scholar
Honing, H., Merchant, H., Háden, G. P., Prado, L. & Bartolo, R. (2012) Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat. PLoS ONE 7(12):110. doi: 10.1371/journal.pone.0051369.Google Scholar
Honing, H. & Ploeger, A. (2012) Cognition and the evolution of music: Pitfalls and prospects. Topics in Cognitive Science 4:513–24. doi: 10.1111/j.1756-8765.2012.01210.x.Google Scholar
Honing, H., ten Cate, C., Peretz, I., & Trehub, S. (in press) Without it no music: Cognition, biology, and evolution of musicality. Philosophical Transactions B.Google Scholar
Mendez, J. C., Prado, L., Mendoza, G. & Merchant, H. (2011) Temporal and spatial categorization in human and non-human primates. Frontiers in Integrative Neuroscience 5(50):110. doi: 10.3389/fnint.2011.00050.CrossRefGoogle ScholarPubMed
Merchant, H., Battaglia-Mayer, A. & Georgopoulos, A. P. (2003) Interception of real and apparent circularly moving targets: Psychophysics in human subjects and monkeys. Experimental Brain Research 152:106–12.CrossRefGoogle Scholar
Merchant, H. & Honing, H. (2014) Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Frontiers in Auditory Cognitive Neuroscience 7:274 doi: 10.3389/fnins.2013.00274.Google ScholarPubMed
Patel, A. D. (2008) Music, language, and the brain. Oxford University Press.Google Scholar
Patel, A. D., Iversen, J. R., Bregman, M. R. & Schulz, I. (2009b) Studying synchronization to a musical beat in nonhuman animals. Annals of the New York Academy of Sciences 1169:459–69. doi: 10.1111/j.1749-6632.2009.04581.x.CrossRefGoogle ScholarPubMed
Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A., Cox, R. W. & Binder, J. R. (1997) Distributed neural systems underlying the timing of movements. Journal of Neuroscience 17:5528–35.Google ScholarPubMed
Schachner, A., Brady, T. F., Pepperberg, I. M. & Hauser, M. D. (2009) Spontaneous motor entrainment to music in multiple vocal mimicking species. Current Biology 19(10):831–36. doi: 10.1016/j.cub.2009.03.061.Google Scholar
Selezneva, E., Deike, S., Knyazeva, S., Scheich, H., Brechmann, A. & Brosch, M. (2013) Rhythm sensitivity in macaque monkeys. Frontiers in Systems Neuroscience 7:49. doi: 10.3389/fnsys.2013.00049.CrossRefGoogle ScholarPubMed
Teki, S., Grube, M., Kumar, S. & Griffiths, T. D. (2011) Distinct neural substrates of duration-based and beat-based auditory timing. The Journal of Neuroscience 31(10):3805–12. doi: 10.1523/jneurosci.5561-10.2011.Google Scholar
Wiener, M., Turkeltaub, P. & Coslett, H. H. (2010) The image of time: A voxel-wise meta-analysis. NeuroImage 49:1728–40.Google Scholar
Winkler, I., Háden, G. P., Ladinig, O., Sziller, I. & Honing, H. (2009) Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences USA 106(7):2468–71. doi: 10.1073/pnas.0809035106.Google Scholar
Zarco, W., Merchant, H., Prado, L. & Mendez, J. C. (2009) Subsecond timing in primates: Comparison of interval production between human subjects and rhesus monkeys. Journal of Neurophysiology 102(6):3191–202. doi: 10.1152/jn.00066.2009.Google Scholar