Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T03:30:50.821Z Has data issue: false hasContentIssue false

Does arousal enhance apical amplification and disamplification?

Published online by Cambridge University Press:  05 January 2017

M. E. Larkum
Affiliation:
Neurocure Cluster of Excellence, Department of Biology, Humboldt University, 10117 Berlin, Germanymatthew.larkum@gmail.com
W. A. Phillips
Affiliation:
Division of Psychology, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdomwap1@stir.ac.uk

Abstract

We summarize evidence that input to the apical tufts of neocortical pyramidal cells modulates their response to basal input. Because this apical amplification and disamplification provide intracortical mechanisms for prioritization, Mather and colleagues' arguments suggest that their effects are enhanced by noradrenergic arousal. Though that is likely, it has not yet been adequately studied. Their article shows that it should be.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnsten, A. F., Wang, M. J. & Paspalas, C. D. (2012) Neuromodulation of thought: Flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76(1):223–39.Google Scholar
Bachmann, T. & Hudetz, A. G. (2014) It is time to combine the two main traditions in the research on the neural correlates of consciousness: C=L× D. Frontiers in Psychology 5:Article 940. doi: 10.3389/fpsyg.2014.00940.Google Scholar
Chalifoux, J. R. & Carter, A. G. (2011) Glutamate spillover promotes the generation of NMDA spikes. The Journal of Neuroscience 31(45):16435–46.Google Scholar
Cichon, J. & Gan, W. B. (2015) Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature 520(7546):180–85.CrossRefGoogle ScholarPubMed
Gambino, F., Pagès, S., Kehayas, V., Baptista, D., Tatti, R., Carleton, A. & Holtmaat, A. (2014) Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515(7525):116–19.CrossRefGoogle ScholarPubMed
Grienberger, C., Chen, X. & Konnerth, A. (2014) NMDA receptor-dependent multidendrite Ca2+ spikes required for hippocampal burst firing in vivo. Neuron 81(6):1274–81.Google Scholar
Larkum, M. (2013) A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex. Trends in Neuroscience 36:141–51.CrossRefGoogle ScholarPubMed
Larkum, M. E. Nevian, T., Sandler, M., Polsky, A. & Schiller, J. (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: A new unifying principle. Science 325:756–60.Google Scholar
Larkum, M. E., Waters, J., Sakmann, B. & Helmchen, F. (2007) Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. The Journal of Neuroscience 27:89999008.Google Scholar
Larkum, M. E., Zhu, J. J. & Sakmann, B. (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 98 (6725):338–41.Google Scholar
Lavzin, M., Rapoport, S., Polsky, A., Garion, L. & Schiller, J. (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490:397401.CrossRefGoogle ScholarPubMed
Meyer, K. (2015) The role of dendritic signaling in the anesthetic suppression of consciousness. Anesthesiology 122:1415–31.Google Scholar
Palmer, L. M., Shai, A. S., Reeve, J. E., Andersen, H. L., Paulsen, O. & Larkum, M. E. (2014) NMDA spikes enhance action potential generation during sensory input. Nature Neuroscience 17:383–90.CrossRefGoogle ScholarPubMed
Phillips, W. A. (2015) Cognitive functions of intracellular mechanisms for contextual amplification. Brain and Cognition. Available at: http://dx.doi.org/10.1016/j.bandc.2015.09.005.Google Scholar
Phillips, W. A., Clark, A. & Silverstein, S. M. (2015) On the functions, mechanisms, and malfunctions of intracortical contextual modulation. Neuroscience and Biobehavioral Reviews 52:120. doi: 10.1016/j.neubiorev.2015.02.010.Google Scholar
Smith, S. L., Smith, I. T., Branco, T. & Häusser, M. (2013) Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503(7474):115–20.CrossRefGoogle ScholarPubMed
Wang, Z. & McCormick, D. A. (1993) Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S, 3R-ACPD. The Journal of Neuroscience 13(5):2199–216.Google Scholar
Xu, N. L., Harnett, M. T., Williams, S. R., Huber, D., O'Connor, D. H., Svoboda, K. & Magee, J. C. (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492(7428):247–51.Google Scholar