Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T21:32:56.921Z Has data issue: false hasContentIssue false

Neonatal imitation in context: Sensorimotor development in the perinatal period

Published online by Cambridge University Press:  14 July 2016

Nazim Keven
Affiliation:
Department of Philosophy, Bilkent University, TR-06800 Bilkent, Ankara, Turkeynazimkeven@bilkent.edu.trhttp://sci-phi.com/
Kathleen A. Akins
Affiliation:
Department of Philosophy, Simon Fraser University, Burnaby, BC V5A 1S6, Canadakathleea@sfu.cahttp://www.sfu.ca/~kathleea/

Abstract

More than 35 years ago, Meltzoff and Moore (1977) published their famous article, “Imitation of facial and manual gestures by human neonates.” Their central conclusion, that neonates can imitate, was and continues to be controversial. Here, we focus on an often-neglected aspect of this debate, namely, neonatal spontaneous behaviors themselves. We present a case study of a paradigmatic orofacial “gesture,” namely tongue protrusion and retraction (TP/R). Against the background of new research on mammalian aerodigestive development, we ask: How does the human aerodigestive system develop, and what role does TP/R play in the neonate's emerging system of aerodigestion? We show that mammalian aerodigestion develops in two phases: (1) from the onset of isolated orofacial movements in utero to the postnatal mastery of suckling at 4 months after birth; and (2) thereafter, from preparation to the mastery of mastication and deglutition of solid foods. Like other orofacial stereotypies, TP/R emerges in the first phase and vanishes prior to the second. Based upon recent advances in activity-driven early neural development, we suggest a sequence of three developmental events in which TP/R might participate: the acquisition of tongue control, the integration of the central pattern generator (CPG) for TP/R with other aerodigestive CPGs, and the formation of connections within the cortical maps of S1 and M1. If correct, orofacial stereotypies are crucial to the maturation of aerodigestion in the neonatal period but also unlikely to co-occur with imitative behavior.

Type
Target Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abravanel, E. & Sigafoos, A. D. (1984) Exploring the presence of imitation during early infancy. Child Development 55(2):381–92.Google Scholar
Adolph, K. E. (1997) Learning in the development of infant locomotion. Monographs of the Society for Research in Child Development 62(3):i+iii+v+;1162. Available at: https://doi.org/10.2307/1166199.CrossRefGoogle ScholarPubMed
Althaus, N. & Plunkett, K. (2015) Timing matters: The impact of label synchrony on infant categorisation. Cognition 139:19. Available at: https://doi.org/10.1016/j.cognition.2015.02.004.CrossRefGoogle ScholarPubMed
Altmann, A. E. & Ozanne-Smith, J. (1997) Non-fatal asphyxiation and foreign body ingestion in children 0–14 years. Injury Prevention 3:176–82.CrossRefGoogle ScholarPubMed
Amaizu, N., Shulman, R., Schanler, R. & Lau, C. (2008) Maturation of oral feeding skills in preterm infants. Acta Paediatrica 97(1):6167. Available at: https://doi.org/10.1111/j.1651-2227.2007.00548.x.Google Scholar
Anisfeld, M. (1991) Review: Neonatal imitation. Developmental Review 11(1):6097.Google Scholar
Anisfeld, M. (1996) Only tongue protrusion modeling is matched by neonates. Developmental Review 16(2):149–61. Available at: https://doi.org/10.1006/drev.1996.0006.Google Scholar
Anisfeld, M. (2005) No compelling evidence to dispute Piaget's timetable of the development of representational imitation in infancy. In: Perspectives on imitation: From cognitive neuroscience to social science, vol. 2: Imitation, human development, and culture, ed. Hurley, S. & Chater, N., pp. 107–32. MIT.Google Scholar
Anisfeld, M., Turkewitz, G., Rose, S. A., Rosenberg, F. R., Sheiber, F. J., Couturier-Fagan, D. A. & Sommer, I. (2001) No compelling evidence that newborns imitate oral gestures. Infancy 2(1):111–22.CrossRefGoogle ScholarPubMed
Arditi, H., Feldman, R. & Eidelman, A. I. (2006) Effects of human contact and vagal regulation on pain reactivity and visual attention in newborns. Developmental Psychobiology 48(7):561–73. Available at: https://doi.org/10.1002/dev.20150.Google Scholar
Bahrick, L. E. (1987) Infants' intermodal perception of two levels of temporal structure in natural events. Infant Behavior and Development 10(4):387416. Available at: https://doi.org/10.1016/0163-6383(87)90039-7.Google Scholar
Bahrick, L. E. (1992) Infants' perceptual differentiation of amodal and modality-specific audio-visual relations. Journal of Experimental Child Psychology 53(2):180–99. Available at: https://doi.org/10.1016/0022-0965(92)90048-B.Google Scholar
Bahrick, L. E. & Lickliter, R. (2000) Intersensory redundancy guides attentional selectivity and perceptual learning in infancy. Developmental Psychology 36(2):190201. Available at: https://doi.org/10.1037/0012-1649.36.2.190.Google Scholar
Bailey, E. F., Huang, Y.-H. & Fregosi, R. F. (2006) Anatomic consequences of intrinsic tongue muscle activation. Journal of Applied Physiology 101(5):1377–85. Available at: https://doi.org/10.1152/japplphysiol.00379.2006.CrossRefGoogle ScholarPubMed
Bakchine, S. L., Lacomblez, E., Palisson, E., Laurent, M. & Derouesné, C. (1989) Relationship between primitive reflexes, extra-pyramidal signs, reflective apraxia and severity of cognitive impairment in dementia of the Alzheimer type. Acta Neurologica Scandinavica 79(1):3846.Google Scholar
Balmer, T. S. & Pallas, S. L. (2015) Refinement but not maintenance of visual receptive fields is independent of visual experience. Cerebral Cortex 25(4):904–17. Available at: https://doi.org/10.1093/cercor/bht281.Google Scholar
Bard, K. A. (2007) Neonatal imitation in chimpanzees (Pan troglodytes) tested with two paradigms. Animal Cognition 10(2):233–42. Available at: https://doi.org/10.1007/s10071-006-0062-3.CrossRefGoogle ScholarPubMed
Barlow, S. M. (2009) Central pattern generation involved in oral and respiratory control for feeding in the term infant. Current Opinion in Otolaryngology and Head and Neck Surgery 17(3):187–93. Available at: https://doi.org/10.1097/MOO.0b013e32832b312a.Google Scholar
Barlow, S. M. & Estep, M. (2006) Central pattern generation and the motor infrastructure for suck, respiration, and speech. Journal of Communication Disorders 39(5):366–80. Available at: https://doi.org/10.1016/j.jcomdis.2006.06.011.Google Scholar
Barlow, S. M., Radder, J. P. L., Radder, M. E. & Radder, A. K. (2010) Central pattern generators for orofacial movements and speech. In: Handbook of behavioral neuroscience, vol. 19, pp. 351–69. Elsevier.Google Scholar
Ben-Ari, Y. (2001) Developing networks play a similar melody. Trends in Neurosciences 24(6):353–60. Available at: https://doi.org/10.1016/S0166-2236(00)01813-0.CrossRefGoogle ScholarPubMed
Bermudez, J. L. (2000) The paradox of self-consciousness. MIT.Google Scholar
Bigelow, A. E. & Power, M. (2012) The effect of mother-infant skin-to-skin contact on infants' response to the Still Face Task from newborn to three months of age. Infant Behavior and Development 35(2):240–51. Available at: https://doi.org/10.1016/j.infbeh.2011.12.008.CrossRefGoogle Scholar
Bjorklund, D. F. (1995) Children's thinking: Developmental function and individual differences. Brooks/Cole.Google Scholar
Blankenship, A. G. & Feller, M. B. (2009) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature Reviews Neuroscience 11:1829. Available at: https://doi.org/10.1038/nrn2759.Google Scholar
Blum, I. D., Zhu, L., Moquin, L., Kokoeva, M. V., Gratton, A., Giros, B. & Storch, K.-F. (2014) A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal. eLife 3:e05105. Available at: https://doi.org/10.7554/eLife.05105.Google Scholar
Blumberg, M. S., Gall, A. J. & Todd, W. D. (2014) The development of sleep-wake rhythms and the search for elemental circuits in the infant brain. Behavioral Neuroscience 128(3):250–63. Available at: https://doi.org/10.1037/a0035891.Google Scholar
Borodinsky, L. N., Root, C. M., Cronin, J. A., Sann, S. B., Gu, X. & Spitzer, N. C. (2004) Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429(6991):523–30. Available at: https://doi.org/10.1038/nature02518.Google Scholar
Bosma, J. F. (1986) Anatomy of the infant head. Johns Hopkins University Press.Google Scholar
Bosma, J. F. (1992) Pharyngeal swallow: Basic mechanisms, development, and impairment. Advances in Otolaryngology: Head and Neck Surgery 6:225–75.Google Scholar
Bosma, J. F., Hepburn, L. G., Josell, S. D. & Baker, K. (1990) Ultrasound demonstration of tongue motions during suckle feeding. Developmental Medicine and Child Neurology 32(3):223–29.Google Scholar
Brass, M. & Heyes, C. (2005) Imitation: Is cognitive neuroscience solving the correspondence problem? Trends in Cognitive Sciences 9(10):489–95. Available at: https://doi.org/10.1016/j.tics.2005.08.007.Google Scholar
Briggman, K. L. & Kristan, W. B. (2008) Multifunctional pattern-generating circuits. Annual Review of Neuroscience 31:271–94. Available at: https://doi.org/10.1146/annurev.neuro.31.060407.125552.Google Scholar
Broussard, D. L. & Altschuler, S. M. (2000) Central integration of swallow and airway-protective reflexes. American Journal of Medicine 108 (Suppl. 4a):62S67S.Google Scholar
Brown, D. L., Smith, T. L. & Knepper, L. E. (1998) Evaluation of five primitive reflexes in 240 young adults. Neurology 51(1):322.Google Scholar
Burns, A., Jacoby, R. & Levy, R. (1991) Neurological signs in Alzheimer's disease. Age and Ageing 20(21):4551.Google Scholar
Bushnell, E. W. (1982) Visual-tactual knowledge in 8-, 9½, and 11-month-old infants. Infant Behavior and Development 5(1):6375. Available at: https://doi.org/10.1016/S0163-6383(82)80017-9.Google Scholar
Bushnell, E. W. & Boudreau, J. P. (1993) Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Development 64(4):1005–21. Available at: https://doi.org/10.2307/1131323.CrossRefGoogle ScholarPubMed
Cairns, R. B., Gariépy, J.-L. & Hood, K. E. (1990) Development, microevolution, and social behavior. Psychological Review 97(1):4965. Available at: https://doi.org/10.1037/0033-295X.97.1.49.Google Scholar
Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J. & Witherington, D. (2000) Travel broadens the mind. Infancy 1(2):149219. Available at: https://doi.org/10.1207/S15327078IN0102_1.Google Scholar
Cang, J. & Feldheim, D. A. (2013) Developmental mechanisms of topographic map formation and alignment. Annual Review of Neuroscience 36:5177. Available at: https://doi.org/10.1146/annurev-neuro-062012-170341.Google Scholar
Cerkevich, C. M., Qi, H.-X. & Kaas, J. H. (2013) Thalamic input to representations of the teeth, tongue, and face in somatosensory area 3b of macaque monkeys. The Journal of Comparative Neurology 521(17):3954–71. Available at: https://doi.org/10.1002/cne.23386.Google Scholar
Cerkevich, C. M., Qi, H.-X. & Kaas, J. H. (2014) Corticocortical projections to representations of the teeth, tongue, and face in somatosensory area 3b of macaques. The Journal of Comparative Neurology 522(3):546–72. Available at: https://doi.org/10.1002/cne.23426.CrossRefGoogle ScholarPubMed
Champoux, F., Lepage, J.-F., Desy, M.-C., Lortie, M. & Theoret, H. (2009) The neurophysiology of early motor resonance. In: Mirror neuron systems: The role of mirroring processes in social cognition, ed. Pineda, J. A., pp. 6376. Humana Press.Google Scholar
Clancy, B., Darlington, R. & Finlay, B. (2000) The course of human events: Predicting the timing of primate neural development. Developmental Science 3(1):5766.CrossRefGoogle Scholar
Clancy, B., Darlington, R. B. & Finlay, B. L. (2001) Translating developmental time across mammalian species. Neuroscience 105(1):717.Google Scholar
Colonnese, M. T. & Khazipov, R. (2010) “Slow activity transients” in infant rat visual cortex: A spreading synchronous oscillation patterned by retinal waves. Journal of Neuroscience 30(12):4325–37. Available at: https://doi.org/10.1523/JNEUROSCI.4995-09.2010.Google Scholar
Courjon, J.-H., Olivier, E. & Pélisson, D. (2004) Direct evidence for the contribution of the superior colliculus in the control of visually guided reaching movements in the cat. Journal of Physiology 556(Pt 3):675–81. Available at: https://doi.org/10.1113/jphysiol.2004.061713.Google Scholar
Crompton, A. W. & Owerkowicz, T. (2004) Correlation between intraoral pressures and tongue movements in the suckling pig. Archives of Oral Biology 49(7):567–75. Available at: https://doi.org/10.1016/j.archoralbio.2004.02.002.Google Scholar
D'Ausilio, A., Pulvermüller, F., Salmas, P., Bufalari, I., Begliomini, C. & Fadiga, L. (2009) The motor somatotopy of speech perception. Current Biology 19(5):381–85.CrossRefGoogle ScholarPubMed
Damasceno, A., Delicio, A. M., Mazo, D. F. C., Zullo, J. F. D., Scherer, P., Ng, R. T. Y. & Damasceno, B. P. (2005) Primitive reflexes and cognitive function. Arquivos de Neuro-Psiquiatria 63(3A):577–82. Available at: https://doi.org/10.1590/S0004-282X2005000400004.Google Scholar
Dash, S., Yan, X., Wang, H. & Crawford, J. D. (2015) Continuous updating of visuospatial memory in superior colliculus during slow eye movements. Current Biology 25(3):267–74. Available at: https://doi.org/10.1016/j.cub.2014.11.064.CrossRefGoogle ScholarPubMed
Deck, M., Lokmane, L., Chauvet, S., Mailhes, C., Keita, M., Niquille, M., Yoshida, M., Yoshida, Y., Lebrand, C., Mann, F., Grove, E. A. & Garel, S. (2013) Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 77(3):472–84. Available at: https://doi.org/10.1016/j.neuron.2012.11.031.Google Scholar
Delaney, A. L. & Arvedson, J. C. (2008) Development of swallowing and feeding: Prenatal through first year of life. Developmental Disabilities Research Reviews 14(2):105–17. Available at: https://doi.org/10.1002/ddrr.16.Google Scholar
Dent, C. H. (1990) An ecological approach to language development: An alternative functionalism. Developmental Psychobiology 23(7):679703. Available at: https://doi.org/10.1002/dev.420230710.CrossRefGoogle ScholarPubMed
de Vries, J. I., Visser, G. H. & Prechtl, H. F. (1982) The emergence of fetal behaviour. I. Qualitative aspects. Early Human Development 7(4):301–22.CrossRefGoogle ScholarPubMed
Dodds, W. J. (1989) The physiology of swallowing. Dysphagia 3(4):171–78.Google Scholar
Doi, A. & Ramirez, J.-M. (2008) Neuromodulation and the orchestration of the respiratory rhythm. Respiratory Physiology and Neurobiology 164(1–2):96104. Available at: https://doi.org/10.1016/j.resp.2008.06.007.Google Scholar
Dominguez, S., Devouche, E., Apter, G. & Gratier, M. (2016) The roots of turn-taking in the neonatal period. Infant and Child Development 25(3):240255. Available at: https://doi.org/10.1002/icd.1976.Google Scholar
Donner, M. W., Bosma, J. F. & Robertson, D. L. (1985) Anatomy and physiology of the pharynx. Gastrointestinal Radiology 10(3):196212.Google Scholar
Dutschmann, M. & Dick, T. E. (2012) Pontine mechanisms of respiratory control. Comprehensive Physiology 2(4):2443–69. Available at: https://doi.org/10.1002/cphy.c100015.CrossRefGoogle ScholarPubMed
Edmond, K. M., Zandoh, C., Quigley, M. A., Amenga-Etego, S., Owusu-Agyei, S. & Kirkwood, B. R. (2006) Delayed breastfeeding initiation increases risk of neonatal mortality. Pediatrics 117(3):e380–86. Available at: https://doi.org/10.1542/peds.2005-1496.CrossRefGoogle ScholarPubMed
Ertekin, C. (2011) Voluntary versus spontaneous swallowing in man. Dysphagia 26(2):183–92.Google Scholar
Ertekin, C. & Aydogdu, I. (2003) Neurophysiology of swallowing. Clinical Neurophysiology 114(12):2226–44.Google Scholar
Fagan, M. K. & Iverson, J. M. (2007) The influence of mouthing on infant vocalization. Infancy 11(2):191202.Google Scholar
Faulks, D., Mazille, M.-N., Collado, V., Veyrune, J.-L. & Hennequin, M. (2008) Masticatory dysfunction in persons with Down's syndrome. Part 2: Management. Journal of Oral Rehabilitation 35(11):863–69. Available at: https://doi.org/10.1111/j.1365-2842.2008.01878.x.Google Scholar
Feldman, R. & Eidelman, A. I. (2003) Skin-to-skin contact (Kangaroo Care) accelerates autonomic and neurobehavioural maturation in preterm infants. Developmental Medicine and Child Neurology 45(4):274–81.CrossRefGoogle ScholarPubMed
Feldman, R., Magori-Cohen, R., Galili, G., Singer, M. & Louzoun, Y. (2011) Mother and infant coordinate heart rhythms through episodes of interaction synchrony. Infant Behavior and Development 34(4):569–77. Available at: https://doi.org/10.1016/j.infbeh.2011.06.008.Google Scholar
Feldman, R., Weller, A., Zagoory-Sharon, O. & Levine, A. (2007) Evidence for a neuroendocrinological foundation of human affiliation: Plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychological Science 18(11):965–70. Available at: https://doi.org/10.1111/j.1467-9280.2007.02010.x.Google Scholar
Ferrari, P. F., Visalberghi, E., Paukner, A., Fogassi, L., Ruggiero, A. & Suomi, S. J. (2006b) Neonatal imitation in rhesus macaques. PLoS Biology 4(9):e302. Available at: https://doi.org/10.1371/journal.pbio.0040302.Google Scholar
Field, T. M., Woodson, R., Cohen, D., Greenberg, R., Garcia, R. & Collins, K. (1983) Discrimination and imitation of facial expressions by term and preterm neonates. Infant Behavior and Development 6(4):485–89. Available at: https://doi.org/10.1016/S0163-6383(83)90316-8.Google Scholar
Field, T. M., Woodson, R., Greenberg, R. & Cohen, D. (1982) Discrimination and imitation of facial expression by neonates. Science 218(4568):179–81. Available at: https://doi.org/10.1126/science.7123230.Google Scholar
Fiszman, M. L., Borodinsky, L. N. & Neale, J. H. (1999) GABA induces proliferation of immature cerebellar granule cells grown in vitro. Developmental Brain Research 115(1):18.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2000) The phonetic potential of nonhuman vocal tracts: Comparative cineradiographic observations of vocalizing animals. Phonetica 57(2–4):205–18.Google Scholar
Fitch, W. T. & Reby, D. (2001) The descended larynx is not uniquely human. Proceedings of the Royal Society B: Biological Sciences 268(1477):1669–75. Available at: https://doi.org/10.1098/rspb.2001.1704.Google Scholar
Fleming, A. S., O'Day, D. H. & Kraemer, G. W. (1999) Neurobiology of mother-infant interactions: Experience and central nervous system plasticity across development and generations. Neuroscience and Biobehavioral Reviews 23(5):673–85.Google Scholar
Fogel, A. (1993) Developing through relationships. University of Chicago Press.Google Scholar
Fontaine, R. (1984) Imitative skills between birth and six months. Infant Behavior and Development 7(3):323–33.Google Scholar
Ford, K. J. & Feller, M. B. (2012) Assembly and disassembly of a retinal cholinergic network. Visual Neuroscience 29(1):6171. Available at: https://doi.org/10.1017/S0952523811000216.Google Scholar
Freedland, R. L. & Bertenthal, B. I. (1994) Developmental changes in interlimb coordination: Transition to hands-and-knees crawling. Psychological Science 5(1):2632. Available at: https://doi.org/10.1111/j.1467-9280.1994.tb00609.x.Google Scholar
Fregosi, R. F. (2008) Influence of tongue muscle contraction and dynamic airway pressure on velopharyngeal volume in the rat. Journal of Applied Physiology 104(3):682–93. Available at: https://doi.org/10.1152/japplphysiol.01043.2007.Google Scholar
Frey, R. & Riede, T. (2003) Sexual dimorphism of the larynx of the Mongolian gazelle (Procapra Gutturosa Pallas, 1777) (Mammalia, Artiodactyla, Bovidae). Zoologischer Anzeiger – A Journal of Comparative Zoology 242(1):3362. Available at: https://doi.org/10.1078/0044-5231-00086.Google Scholar
Fuller, D. D., Williams, J. S., Janssen, P. L. & Fregosi, R. F. (1999) Effect of co-activation of tongue protrudor and retractor muscles on tongue movements and pharyngeal airflow mechanics in the rat. The Journal of Physiology 519(Pt 2):601–13.CrossRefGoogle ScholarPubMed
Furman, M., Xu, H.-P. & Crair, M. C. (2013) Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus. Journal of Neurophysiology 110(6):1441–54. Available at: https://doi.org/10.1152/jn.01066.2012.Google Scholar
Gallagher, S. (2005) How the body shapes the mind. Clarendon.Google Scholar
Gallagher, S. & Meltzoff, A. (1996) The earliest sense of self and other: Merleau-Ponty and recent developmental studies. Philosophical Psychology 9(2):211–33.Google Scholar
Gallese, V. (2003) The manifold nature of interpersonal relations: The quest for a common mechanism. Philosophical Transactions of the Royal Society B: Biological Sciences 358(1431):517–28.Google Scholar
Gallese, V. (2005) “Being like me”: Self-other identity, mirror neurons and empathy. In: Perspectives on imitation: From cognitive neuroscience to social science, vol. I, ed. Hurley, S. &. Chater, N., pp. 101–18. MIT Press.Google Scholar
Garaschuk, O., Hanse, E. & Konnerth, A. (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. The Journal of Physiology 507(Pt 1):219–36.Google Scholar
German, R., Crompton, A., Owerkowicz, T. & Thexton, A. (2004) Volume and rate of milk delivery as determinants of swallowing in an infant model animal (Sus scrofia). Dysphagia 19(3):147154.Google Scholar
German, R. Z., Crompton, A. W. & Thexton, A. J. (2009) Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. Journal of Neurophysiology 102(2):1017–25. Available at: https://doi.org/10.1152/jn.00100.2009.Google Scholar
Gewolb, I. H. & Vice, F. L. (2006) Maturational changes in the rhythms, patterning, and coordination of respiration and swallow during feeding in preterm and term infants. Developmental Medicine and Child Neurology 48(7):589–94. Available at: https://doi.org/10.1111/j.1469-8749.2006.tb01320.x.CrossRefGoogle ScholarPubMed
Gibson, E. J. & Schumuckler, M. A. (1989) Going somewhere: An ecological and experimental approach to development of mobility. Ecological Psychology 1(1):325. Available at: https://doi.org/10.1207/s15326969eco0101_2.Google Scholar
Gibson, E. J. & Spelke, E. S. (1983) The development of perception. In: Handbook of child psychology, vol. 3, ed. Mussen, P., Flavell, J. H. & Markman, E., pp. 176. Wiley.Google Scholar
Gibson, E. J. & Walker, A. S. (1984) Development of knowledge of visual-tactual affordances of substance. Child Development 55(2):453–60.Google Scholar
Go, T., Konishi, Y. & Baune, B. (2008) Neonatal oral imitation in patients with severe brain damage. PLoS ONE 3(11):e3668. Available at: https://doi.org/10.1371/journal.pone.0003668.t001.Google Scholar
Goldman, A. I. (2006) Simulating minds: The philosophy, psychology, and neuroscience of mindreading. Oxford University Press.Google Scholar
Goodkin, F. (1980) The development of mature patterns of head-eye coordination in the human infant. Early Human Development 4(4):373–86.Google Scholar
Gopnik, A., Meltzoff, A. N. & Kuhl, P. K. (1999) The scientist in the crib: What early learning tells us about the mind. William Morrow.Google Scholar
Gopnik, A. & Wellman, H. M. (1992) Why the child's theory of mind really is a theory. Mind and Language 7(1–2):145–71.Google Scholar
Greer, J. J., Funk, G. D. & Ballanyi, K. (2006) Preparing for the first breath: Prenatal maturation of respiratory neural control. The Journal of Physiology 570(Pt. 3):437–44. Available at: https://doi.org/10.1113/jphysiol.2005.097238.Google Scholar
Grillner, S. (2006) Biological pattern generation: The cellular and computational logic of networks in motion. Neuron 52(5):751–66. Available at: https://doi.org/10.1016/j.neuron.2006.11.008.Google Scholar
Grillner, S., Hellgren, J., Ménard, A., Saitoh, K. & Wikström, M. A. (2005a) Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends in Neurosciences 28(7):364–70. Available at: https://doi.org/10.1016/j.tins.2005.05.004.Google Scholar
Grillner, S., Markram, H., De Schutter, E., Silberberg, G. & LeBeau, F. E. N. (2005b) Microcircuits in action – from CPGs to neocortex. Trends in Neurosciences 28(10):525–33. Available at: https://doi.org/10.1016/j.tins.2005.08.003.Google Scholar
Grillner, S., Wallén, P., Saitoh, K., Kozlov, A. & Robertson, B. (2008) Neural bases of goal-directed locomotion in vertebrates – an overview. Brain Research Reviews 57(1):212. Available at: https://doi.org/10.1016/j.brainresrev.2007.06.027.Google Scholar
Gu, X., Olson, E. C. & Spitzer, N. C. (1994) Spontaneous neuronal calcium spikes and waves during early differentiation. The Journal of Neuroscience 14(11 Pt 1):6325–35.Google Scholar
Guo, Y., Goldberg, S. J. & McClung, J. R. (1996) Compartmental organization of styloglossus and hyoglossus motoneurons in the hypoglossal nucleus of the rat. Brain Research 728(2):277–80.Google Scholar
Gutierrez, G. J., O'Leary, T. & Marder, E. (2013) Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77(5):845–58. Available at: https://doi.org/10.1016/j.neuron.2013.01.016.Google Scholar
Hall, N. & Colby, C. (2014) S-cone visual stimuli activate superior colliculus neurons in old world monkeys: Implications for understanding blindsight. Journal of Cognitive Neuroscience 26(6):1234–56. Available at: https://doi.org/10.1162/jocn_a_00555.Google Scholar
Ham, J. & Tronick, E. D. (2006) Infant resilience to the stress of the still-face: Infant and maternal psychophysiology are related. Annals of the New York Academy of Sciences 1094(1):297302. Available at: https://doi.org/10.1196/annals.1376.038.Google Scholar
Hamdy, S., Aziz, Q., Rothwell, J. C., Singh, K. D., Barlow, J., Hughes, D. G., Tallis, R. C. & Thompson, D. G. (1996) The cortical topography of human swallowing musculature in health and disease. Nature Medicine 2(11):1217–24.Google Scholar
Hamdy, S., Rothwell, J. C., Brooks, D. J., Bailey, D., Aziz, Q. & Thompson, D. G. (1999) Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. Journal of Neurophysiology 81(4):1917–26.Google Scholar
Hanson, M. G. & Landmesser, L. T. (2003) Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. Journal of Neuroscience 23(2):587600.Google Scholar
Hanson, M. G. & Landmesser, L. T. (2004) Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 43(5):687701. Available at: https://doi.org/10.1016/j.neuron.2004.08.018.Google Scholar
Hanson, M. G., Milner, L. D. & Landmesser, L. T. (2008) Spontaneous rhythmic activity in early chick spinal cord influences distinct motor axon pathfinding decisions. Brain Research Reviews 57(1):7785.Google Scholar
Harris-Warrick, R. M. (2011) Neuromodulation and flexibility in Central Pattern Generator networks. Current Opinion in Neurobiology 21(5):685–92. Available at: https://doi.org/10.1016/j.conb.2011.05.011.Google Scholar
Harris-Warrick, R. M. & Marder, E. (1991) Modulation of neural networks for behavior. Annual Review of Neuroscience 14:3957.Google Scholar
Hata, T., Dai, S.-Y. & Marumo, G. (2009) Ultrasound for evaluation of fetal neurobehavioural development: From 2-D to 4-D ultrasound. Infant and Child Development 19(1):99118. Available at: https://doi.org/10.1002/icd.659.Google Scholar
Heimann, M., Nelson, K. E. & Schaller, J. (1989) Neonatal imitation of tongue protrusion and mouth opening: Methodological aspects and evidence of early individual differences. Scandinavian Journal of Psychology 30(2):90101.Google Scholar
Hentschel, J., Ruff, R., Juette, F., von Gontard, A. & Gortner, L. (2007) Neonatal facial movements in the first minutes of life – eye opening and tongue thrust: An observational study. American Journal of Perinatology 24(10):611–18. Available at: https://doi.org/10.1055/s-2007-992178.CrossRefGoogle ScholarPubMed
Hiiemae, K. M., Hayenga, S. M. & Reese, A. (1995) Patterns of tongue and jaw movement in a cinefluorographic study of feeding in the macaque. Archives of Oral Biology 40(3):229–46.Google Scholar
Hiiemae, K. M. & Palmer, J. B. (2003) Tongue movements in feeding and speech. Critical Reviews in Oral Biology and Medicine 14(6):413–29.Google Scholar
Hiiemae, K. M., Palmer, J. B., Medicis, S. W., Hegener, J., Jackson, B. S. & Lieberman, D. E. (2002) Hyoid and tongue surface movements in speaking and eating. Archives of Oral Biology 47(1): 1127.Google Scholar
Himmelbach, M., Linzenbold, W. & Ilg, U. J. (2013) Dissociation of reach-related and visual signals in the human superior colliculus. NeuroImage 82:61–7. Available at: https://doi.org/10.1016/j.neuroimage.2013.05.101.Google Scholar
Hubel, D. H. & Wiesel, T. N. (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. The Journal of Physiology 206(2):419–36. Available at: https://doi.org/10.1113/jphysiol.1970.sp009022.Google Scholar
Hubel, D. H., Wiesel, T. N. & LeVay, S. (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society B: Biological Sciences 278(961):377409.Google Scholar
Iacoboni, M. (2009a) Imitation, empathy, and mirror neurons. Annual Review of Psychology 60(1):653–70.Google Scholar
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C. & Rizzolatti, G. (2005) Grasping the intentions of others with one's own mirror neuron system. PLoS Biology 3(3):e79.Google Scholar
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C. & Rizzolatti, G. (1999) Cortical mechanisms of human imitation. Science 286(5449):2526–28.Google Scholar
Imai, T. & Sakano, H. (2011) Axon-axon interactions in neuronal circuit assembly: Lessons from olfactory map formation. European Journal of Neuroscience 34(10):1647–54. Available at: https://doi.org/10.1111/j.1460-9568.2011.07817.x.Google Scholar
Iwamoto, Y. & Sasaki, S. (1990) Monosynaptic excitatory connexions of reticulospinal neurones in the nucleus reticularis pontis caudalis with dorsal neck motoneurones in the cat. Experimental Brain Research 80(2):277–89. Available at: https://doi.org/10.1007/BF00228155.Google Scholar
Jacobson, S. W. (1979) Matching behavior in the young infant. Child Development 50(2):425–30. Available at: https://doi.org/10.2307/1129418.Google Scholar
Jiang, W., Wallace, M. T., Jiang, H., Vaughan, J. W. & Stein, B. E. (2001) Two cortical areas. Neurophysiology 85(2):506–22.Google Scholar
John, J., Bailey, E. F. & Fregosi, R. F. (2005) Respiratory-related discharge of genioglossus muscle motor units. American Journal of Respiratory and Critical Care Medicine 172(10):1331–37. Available at: https://doi.org/10.1164/rccm.200505-790OC.Google Scholar
Johnson, M. H., Dziurawiec, S., Ellis, H. & Morton, J. (1991) Newborns' preferential tracking of face-like stimuli and its subsequent decline. Cognition 40(1–2):119.Google Scholar
Johnson, M. H., Senju, A. & Tomalski, P. (2015) The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience and Biobehavioral Reviews 50:169–79. Available at: https://doi.org/10.1016/j.neubiorev.2014.10.009.Google Scholar
Jones, S. S. (1996) Imitation or exploration? Young infants' matching of adults' oral gestures. Child Development 67(5):1952–69. Available at: https://doi.org/10.2307/1131603.Google Scholar
Jones, S. S. (2006a) Exploration or imitation? The effect of music on 4-week-old infants' tongue protrusions. Infant Behavior and Development 29(1):126–30. Available at: https://doi.org/.1016/j.infbeh.2005.08.004.Google Scholar
Jones, S. S. (2006b) Infants learn to imitate by being imitated. In: Proceedings of the International Conference on Development and Learning: The Tenth International Conference on Development and Learning, Bloomington, Indiana, May 31–June, 2006. Indiana University.Google Scholar
Jones, S. S. (2009) The development of imitation in infancy. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1528):2325–35.Google Scholar
Kanold, P. O. & Luhmann, H. J. (2010) The subplate and early cortical circuits. Annual Review of Neuroscience 33(1):2348. Available at: https://doi.org/10.1146/annurev-neuro-060909-153244.Google Scholar
Kelly, B. N., Huckabee, M.-L., Jones, R. D. & Frampton, C. M. A. (2007) The first year of human life: Coordinating respiration and nutritive swallowing. Dysphagia 22(1):3743. Available at: https://doi.org/10.1007/s00455-006-9038-3.Google Scholar
Khalilov, I., Minlebaev, M., Mukhtarov, M. & Khazipov, R. (2015) Dynamic changes from depolarizing to hyperpolarizing GABAergic actions during giant depolarizing potentials in the neonatal rat hippocampus. Journal of Neuroscience 35(37):12635–42. Available at: https://doi.org/10.1523/JNEUROSCI.1922-15.2015.Google Scholar
Khazipov, R., Sirota, A., Leinekugel, X., Holmes, G. L., Ben-Ari, Y. & Buzsáki, G. (2004) Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432(7018):758–61. Available at: https://doi.org/10.1038/nature03132.Google Scholar
Kier, W. M. (2012) The diversity of hydrostatic skeletons. The Journal of Experimental Biology 215(Pt 8):1247–57. Available at: https://doi.org/10.1242/jeb.056549.Google Scholar
Kim, P., Feldman, R., Mayes, L. C., Eicher, V., Thompson, N., Leckman, J. F. & Swain, J. E. (2011) Breastfeeding, brain activation to own infant cry, and maternal sensitivity. Journal of Child Psychology and Psychiatry, and Allied Disciplines 52(8):907–15. Available at: https://doi.org/10.1111/j.1469-7610.2011.02406.x.Google Scholar
Kirkby, L. A., Sack, G. S., Firl, A. & Feller, M. B. (2013) A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 80(5):1129–44. Available at: https://doi.org/10.1016/j.neuron.2013.10.030.Google Scholar
Kita, E. M., Scott, E. K. & Goodhill, G. J. (2015) The influence of activity on axon pathfinding in the optic tectum. Developmental Neurobiology 75(6):608–20. Available at: http://doi.org/10.1002/dneu.22262.Google Scholar
Kohda, E., Hisazumi, H. & Hiramatsu, K. (1994) Swallowing dysfunction and aspiration in neonates and infants. Acta Otolaryngological (Suppl.), 517:1116.Google Scholar
Konur, S. & Ghosh, A. (2005) Calcium signaling and the control of dendritic development. Neuron 46(3):401–5.Google Scholar
Kozlov, A., Huss, M., Lansner, A., Kotaleski, J. H. & Grillner, S. (2009) Simple cellular and network control principles govern complex patterns of motor behavior. Proceedings of the National Academy of Sciences USA 106(47):20027–32.Google Scholar
Krauzlis, R. J., Basso, M. A. & Wurtz, R. H. (2000) Discharge properties of neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements. Journal of Neurophysiology 84(2):876–91.Google Scholar
Kugiumutzakis, G. (1999) Genesis and development of early infant mimesis to facial and vocal models. In: Imitation in infancy, ed. Nadel, L. & Butterworth, G., pp. 3659. Cambridge University Press.Google Scholar
Kuhl, P. K. (2000) A new view of language acquisition. Proceedings of the National Academy of Sciences USA 97(22):11850–57. Available at: https://doi.org/10.1073/pnas.97.22.11850.Google Scholar
Kurjak, A., Stanojevic, M., Andonotopo, W., Salihagic-Kadic, A., Carrera, J. M. & Azumendi, G. (2004) Behavioral pattern continuity from prenatal to postnatal life – a study by four-dimensional (4D) ultrasonography. Journal of Perinatal Medicine 32(4), 346–53. Available at: https://doi.org/10.1515/JPM.2004.065.Google Scholar
Kvarta, M. D., Harris-Warrick, R. M. & Johnson, B. R. (2012) Neuromodulator-evoked synaptic metaplasticity within a central pattern generator network. Journal of Neurophysiology 108(10):2846–56.Google Scholar
Laine, C. M., Nickerson, L. A. & Bailey, E. F. (2012) Cortical entrainment of human hypoglossal motor unit activities. Journal of Neurophysiology 107(1):493–99. Available at: https://doi.org/10.1152/jn.00769.2011.Google Scholar
Lau, C., Smith, E. O. & Schanler, R. J. (2003) Coordination of suck-swallow and swallow respiration in preterm infants. Acta Paediatrica 92(6):721–27.Google Scholar
Lavelli, M. & Fogel, A. (2002) Developmental changes in mother-infant face-to-face communication: Birth to 3 months. Developmental Psychology 38(2):288305.Google Scholar
Lavezzi, A. M., Corna, M., Mingrone, R. & Matturri, L. (2010) Study of the human hypoglossal nucleus: Normal development and morpho-functional alterations in sudden unexplained late fetal and infant death. Brain and Development (Special Section: Developmental Neuropathology) 32(4):275–84. Available at: https://doi.org/10.1016/j.braindev.2009.05.006.Google Scholar
Legerstee, M. (1991) The role of person and object in eliciting early imitation. Journal of Experimental Child Psychology 51(3):423–33. Available at: https://doi.org/10.1016/0022-0965(91)90086-8.Google Scholar
Leopold, N. A. & Daniels, S. K. (2009) Supranuclear control of swallowing. Dysphagia 25(3):250–57. Available at: https://doi.org/10.1007/s00455-009-9249-5.Google Scholar
Lepage, J.-F. & Théoret, H. (2007) The mirror neuron system: Grasping others' actions from birth? Developmental Science 10(5):513–23. Available at: https://doi.org/10.1111/j.1467-7687.2007.00631.x.Google Scholar
Lerner, R. M. (1988) Personality development: A life-span perspective. In: Child development in life-span perspective, ed. Hetherington, E. M., Lerner, R. M. & Perlmutter, M., pp. 2146. Erlbaum.Google Scholar
Leslie, K. R., Johnson-Frey, S. H. & Grafton, S. T. (2004) Functional imaging of face and hand imitation: Towards a motor theory of empathy. NeuroImage 21(2):601–7.Google Scholar
Levine, A., Zagoory-Sharon, O., Feldman, R. & Weller, A. (2007) Oxytocin during pregnancy and early postpartum: Individual patterns and maternal-fetal attachment. Peptides 28(6):1162–69. Available at: https://doi.org/10.1016/j.peptides.2007.04.016.CrossRefGoogle ScholarPubMed
Lewis, M. D. & Granic, I. (2002) Emotion, development, and self-organization: Dynamic systems approaches to emotional development. Cambridge University Press.Google Scholar
Lewkowicz, D. J. (1986) Developmental changes in infants' bisensory response to synchronous durations. Infant Behavior and Development 9(3):335–53. Available at: https://doi.org/10.1016/0163-6383(86)90008-1.Google Scholar
Lewkowicz, D. J. (1992) Infants' response to temporally based intersensory equivalence: The effect of synchronous sounds on visual preferences for moving stimuli. Infant Behavior and Development 15(3):297324. Available at: https://doi.org/10.1016/0163-6383(92)80002-C.Google Scholar
Lieberman, D. E., McCarthy, R. C., Hiiemae, K. M. & Palmer, J. B. (2001) Ontogeny of postnatal hyoid and larynx descent in humans. Archives of Oral Biology 46(2):117–28.Google Scholar
Lieberman, P. (1968) On the acoustic analysis of primate vocalizations. Behavior Research Methods & Instrumentation 1(5):169–74. doi: 10.3758/BF03207969.Google Scholar
Lieberman, P. (1975) On the origins of language: An introduction to the evolution of human speech. Macmillan.Google Scholar
Lieberman, P. (1987) The biology and evolution of language. Harvard University Press.Google Scholar
Lieske, S. P., Thoby-Brisson, M., Telgkamp, P. & Ramirez, J. M. (2000) Reconfiguration of the neural network controlling multiple breathing patterns: Eupnea, sighs and gasps. Nature Neuroscience 3(6):600607. Available at: https://doi.org/10.1038/75776.Google Scholar
Limbrock, G. J., Fischer-Brandies, H. & Avalle, C. (1991) Castillo-Morales' orofacial therapy: Treatment of 67 children with Down syndrome. Developmental Medicine and Child Neurology 33(4):296303.Google Scholar
Linzenbold, W. & Himmelbach, M. (2012) Signals from the deep: Reach-related activity in the human superior colliculus. Journal of Neuroscience 32(40):13881–88. Available at: https://doi.org/10.1523/JNEUROSCI.0619-12.2012.Google Scholar
LoTurco, J. J., Owens, D. F., Heath, M. & Davis, M. (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15(6):1287–98.Google Scholar
Lüchinger, A. B., Hadders-Algra, M., van Kan, C. M. & de Vries, J. I. P. (2008) Fetal onset of general movements. Pediatric Research 63(2):191–95. Available at: https://doi.org/10.1203/PDR.0b013e31815ed03e.Google Scholar
Luhmann, H. J., Kirischuk, S., Sinning, A. & Kilb, W. (2014) Early GABAergic circuitry in the cerebral cortex. Current Opinion in Neurobiology 26:7278. Available at: https://doi.org/10.1016/j.conb.2013.12.014.Google Scholar
Mahan, M. Y. & Georgopoulos, A. P. (2013) Motor directional tuning across brain areas: Directional resonance and the role of inhibition for directional accuracy. Frontiers in Neural Circuits 7, Article No. 92. Available at: https://doi.org/10.3389/fncir.2013.00092.Google Scholar
Marder, E. (2012) Neuromodulation of neuronal circuits: Back to the future. Neuron 76(1):111. Available at: https://doi.org/10.1016/j.neuron.2012.09.010.CrossRefGoogle ScholarPubMed
Marder, E. & Bucher, D. (2001) Central pattern generators and the control of rhythmic movements. Current Biology 11(23):R986–96.Google Scholar
Marder, E., O'Leary, T. & Shruti, S. (2014) Neuromodulation of circuits with variable parameters: Single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annual Review of Neuroscience 37:329–46. Available at: https://doi.org/10.1146/annurev-neuro-071013-013958.Google Scholar
Marder, E. & Taylor, A. L. (2011) Multiple models to capture the variability in biological neurons and networks. Nature Neuroscience 14(2):133–38. Available at: https://doi.org/10.1038/nn.2735.Google Scholar
Marino, R. A., Levy, R. & Munoz, D. P. (2015) Linking express saccade occurrence to stimulus properties and sensorimotor integration in the superior colliculus. Journal of Neurophysiology 114(2):879–92. Available at: https://doi.org/10.1152/jn.00047.2015.Google Scholar
Marlier, L., Schaal, B. & Soussignan, R. (1998) Neonatal responsiveness to the odor of amniotic and lacteal fluids: A test of perinatal chemosensory continuity. Child Development 69(3):611–23.Google Scholar
Martin, J. H. (2005) The corticospinal system: From development to motor control. The Neuroscientist 11(2):161–73. Available at: https://doi.org/10.1177/1073858404270843.Google Scholar
Matsuo, K. & Palmer, J. B. (2008) Anatomy and physiology of feeding and swallowing -- Normal and abnormal. Physical Medicine and Rehabilitation Clinics of North America 19(4):691707.Google Scholar
May, P. J. (2006) The mammalian superior colliculus: Laminar structure and connections. Progress in Brain Research 151:321–78. Available at: https://doi.org/10.1016/S0079-6123(05)51011-2.Google Scholar
McClung, J. R. & Goldberg, S. J. (2000) Functional anatomy of the hypoglossal innervated muscles of the rat tongue: A model for elongation and protrusion of the mammalian tongue. The Anatomical Record 260(4):378–86. Available at: http://onlinelibrary.wiley.com/doi/10.1002/1097-0185(20001201)260:4%3C378::AID-AR70%3E3.0.CO;2-A/full.Google Scholar
McClung, J. R. & Goldberg, S. J. (2002) Organization of the hypoglossal motoneurons that innervate the horizontal and oblique components of the genioglossus muscle in the rat. Brain Research 950(1–2):321–24.Google Scholar
Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252(5008):939–43.Google Scholar
Meltzoff, A. N. & Borton, R. W. (1979) Intermodal matching by human neonates. Nature 282(5737):403–4.Google Scholar
Meltzoff, A. N. & Decety, J. (2003) What imitation tells us about social cognition: A rapprochement between developmental psychology and cognitive neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences 358(1431):491500. Available at: https://doi.org/10.1098/rstb.2002.1261.Google Scholar
Meltzoff, A. N. & Moore, M. K. (1977) Imitation of facial and manual gestures by human neonates. Science 198(4312):7578. Available at: http://science.sciencemag.org/content/198/4312/75.Google Scholar
Meltzoff, A. N. & Moore, M. K. (1983) Newborn infants imitate adult facial gestures. Child Development 54(3):702–9. Available at: https://doi.org/10.2307/1130058.Google Scholar
Meltzoff, A. N. & Moore, M. K. (1985) Cognitive foundations and social functions of imitation and intermodal representation in infancy. In: Neonate cognition: Beyond the blooming, buzzing confusion, ed. Mehler, J. & Fox, R., pp. 139–56. Erlbaum.Google Scholar
Meltzoff, A. N. & Moore, M. K. (1989) Imitation in newborn infants: Exploring the range of gestures imitated and the underlying mechanisms. Developmental Psychology 25(6):954–62.Google Scholar
Meltzoff, A. N. & Moore, M. K. (1992) Early imitation within a functional framework: The importance of person identity, movement, and development. Infant Behavior and Development 15(4):479505.Google Scholar
Meredith, M. A. & Stein, B. E. (1986a) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Research 365(2):350–54. Available at: https://doi.org/10.1016/0006-8993(86)91648-3.Google Scholar
Meredith, M. A. & Stein, B. E. (1986b) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology 56(3):640–62.Google Scholar
Messinger, D. & Fogel, A. (2007) The interactive development of social smiling. Advances in Child Development and Behavior 35:327–66.Google Scholar
Metzinger, T. (2004) Being no one: The self-model theory of subjectivity. MIT/Bradford.Google Scholar
Miller, A. (2002) Oral and pharyngeal reflexes in the mammalian nervous system: Their diverse range in complexity and the pivotal roll of the tongue. Critical Reviews in Oral Biology and Medicine 13(5):409–25. Available at: https://doi.org/10.1177/154411130201300505.Google Scholar
Miller, J. L. (2003) Emergence of oropharyngeal, laryngeal and swallowing activity in the developing fetal upper aerodigestive tract: An ultrasound evaluation. Early Human Development 71(1):6187.Google Scholar
Mistry, S. & Hamdy, S. (2008) Neural control of feeding and swallowing. Physical Medicine and Rehabilitation Clinics of North America 19(4):709–28, vii–viii. Available at: https://doi.org/10.1016/j.pmr.2008.05.002.Google Scholar
Mistry, S., Rothwell, J. C., Thompson, D. G. & Hamdy, S. (2006) Modulation of human cortical swallowing motor pathways after pleasant and aversive taste stimuli. The American Journal of Physiology-Gastrointestinal and Liver Physiology 291(4):G666–71. Available at: https://doi.org/10.1152/ajpgi.00573.2005.Google Scholar
Mizuno, K. & Ueda, A. (2001) Development of sucking behavior in infants with Down's syndrome. Acta Paediatrica 90(12):1384–88.Google Scholar
Mohawk, J. A., Green, C. B. & Takahashi, J. S. (2012) Central and peripheral circadian clocks in mammals. Annual Review of Neuroscience 35(1):445–62. Available at: https://doi.org/10.1146/annurev-neuro-060909-153128.Google Scholar
Müller, F. & O'Rahilly, R. (2011) The initial appearance of the cranial nerves and related neuronal migration in staged human embryos. Cells Tissues Organs 193(4):215–38.Google Scholar
Müller, J. R., Philiastides, M. G. & Newsome, W. T. (2005) Microstimulation of the superior colliculus focuses attention without moving the eyes. Proceedings of the National Academy of Sciences USA 102(3):524–29. Available at: https://doi.org/10.1073/pnas.0408311101.Google Scholar
Myowa, M. (1996) Imitation of facial gestures by an infant chimpanzee. Primates 37(2):207–13. Available at: https://doi.org/10.1007/BF02381408.Google Scholar
Myowa-Yamakoshi, M., Tomonaga, M., Tanaka, M. & Matsuzawa, T. (2004) Imitation in neonatal chimpanzees (Pan troglodytes). Developmental Science 7(4):437–42.Google Scholar
Nagy, E. & Molnar, P. (2004) Homo imitans or homo provocans? Human imprinting model of neonatal imitation. Infant Behavior and Development 27(1):5463.Google Scholar
Nagy, E., Pilling, K., Orvos, H. & Molnar, P. (2013) Imitation of tongue protrusion in human neonates: Specificity of the response in a large sample. Developmental Psychology 49(9):1628–38. Available at: https://doi.org/10.1037/a0031127.Google Scholar
Neil, P. A., Chee-Ruiter, C., Scheier, C., Lewkowicz, D. J. & Shimojo, S. (2006) Development of multisensory spatial integration and perception in humans. Developmental Science 9(5):454–64.Google Scholar
Nijhuis, J. G., Prechtl, H. F., Martin, C. B. & Bots, R. S. (1982) Are there behavioural states in the human fetus? Early Human Development 6(2):177–95.Google Scholar
Nishimura, T. (2003) Comparative morphology of the hyo-laryngeal complex in anthropoids: Two steps in the evolution of the descent of the larynx. Primates 44(1):4149. Available at: https://doi.org/10.1007/s10329-002-0005-9.Google Scholar
Nishimura, T., Mikami, A., Suzuki, J. & Matsuzawa, T. (2003) Descent of the larynx in chimpanzee infants. Proceedings of the National Academy of Sciences USA 100(12):6930–33. Available at: https://doi.org/10.1073/pnas.1231107100.Google Scholar
Nishimura, T., Mikami, A., Suzuki, J. & Matsuzawa, T. (2006) Descent of the hyoid in chimpanzees: Evolution of face flattening and speech. Journal of Human Evolution 51(3):244–54. Available at: https://doi.org/10.1016/j.jhevol.2006.03.005.Google Scholar
Nishimura, T., Oishi, T., Suzuki, J., Matsuda, K. & Takahashi, T. (2008) Development of the supralaryngeal vocal tract in Japanese macaques: Implications for the evolution of the descent of the larynx. American Journal of Physical Anthropology 135(2):182–94. https://doi.org/10.1002/ajpa.20719.Google Scholar
Ockleford, E. M., Vince, M. A., Layton, C. & Reader, M. R. (1988) Responses of neonates to parents' and others' voices. Early Human Development 18(1):2736.Google Scholar
O'Donovan, M. J. (1999) The origin of spontaneous activity in developing networks of the vertebrate nervous system. Current Opinion in Neurobiology 9(1):94104. Available at: https://doi.org/10.1016/S0959-4388(99)80012-9.Google Scholar
Oostenbroek, J., Slaughter, V., Nielsen, M. & Suddendorf, T. (2013) Why the confusion around neonatal imitation? A review. Journal of Reproductive and Infant Psychology 31(4):328–41.Google Scholar
Oostenbroek, J., Suddendorf, T., Nielsen, M., Redshaw, J., Kennedy-Costantini, S., Davis, J., Clark, S. & Slaughter, V. (2016) Comprehensive longitudinal study challenges the existence of neonatal imitation in humans. Current Biology 26(10):1334–38. Available at: https://doi.org/10.1016/j.cub.2016.03.047.Google Scholar
Palmer, J. B., Rudin, N. J., Lara, G. & Crompton, A. W. (1992) Coordination of mastication and swallowing. Dysphagia 7(4):187200.Google Scholar
Philipp, R. & Hoffmann, K.-P. (2014) Arm movements induced by electrical microstimulation in the superior colliculus of the macaque monkey. Journal of Neuroscience 34(9):3350–63. Available at: https://doi.org/10.1523/JNEUROSCI.0443-13.2014.Google Scholar
Piaget, J. (1962) Play, dreams and imitation in childhood, transl. Attegno, C. & Hodgson, F. M.. Norton.Google Scholar
Piek, J. P. & Carman, R. (1994) Developmental profiles of spontaneous movements in infants. Early Human Development 39(2):109–26.Google Scholar
Pitti, A., Kuniyoshi, Y., Quoy, M. & Gaussier, P. (2013) Explaining neonate facial imitation from the sensory alignment in the superior colliculus. Paper presented at the 2013 IEEE International Conference on Development and Learning and Epigenetic Robotics, Osaka, Japan, August 18–22, 2013. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6652544.Google Scholar
Pittman, L. J. & Bailey, E. F. (2009) Genioglossus and intrinsic electromyographic activities in impeded and unimpeded protrusion tasks. Journal of Neurophysiology 101(1):276–82.Google Scholar
Pracy, R. (1983) The infant larynx. The Journal of Laryngology and Otology 97(10):933–47.Google Scholar
Praud, J.-P. & Reix, P. (2005) Upper airways and neonatal respiration. Respiratory Physiology and Neurobiology 149(1–3):131–41. Available at: https://doi.org/10.1016/j.resp.2005.04.020.Google Scholar
Prechtl, H. (1974) The behavioural states of the newborn infant (a review). Brain Research 76:185212.Google Scholar
Prechtl, H. F. (1985) Ultrasound studies of human fetal behaviour. Early Human Development 12(2):9198.Google Scholar
Prechtl, H. F. (1993) The effect of behavioural state on general movements in healthy full-term newborns. A polymyographic study. Early Human Development 35(1):6379.Google Scholar
Preston, S. D. & de Waal, F. B. M. (2002) Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences 25(01):120.Google Scholar
Qureshi, M. A., Vice, F. L., Taciak, V. L., Bosma, J. F. & Gewolb, I. H. (2002) Changes in rhythmic suckle feeding patterns in term infants in the first month of life. Developmental Medicine and Child Neurology 44(1):3439.Google Scholar
Ramirez, J. M. & Pearson, K. G. (1988) Generation of motor patterns for walking and flight in motoneurons supplying bifunctional muscles in the locust. Journal of Neurobiology 19(3):257–82. Available at: https://doi.org/10.1002/neu.480190307.Google Scholar
Ray, E. & Heyes, C. (2011) Imitation in infancy: The wealth of the stimulus. Developmental Science 14(1):92105. Available at: https://doi.org/10.1111/j.1467-7687.2010.00961.x.Google Scholar
Redgrave, P., McHaffie, J. G. & Stein, B. E. (1996a) Nociceptive neurones in rat superior colliculus. I. Antidromic activation from the contralateral predorsal bundle. Experimental Brain Research 109(2):185–96.Google Scholar
Redgrave, P., Simkins, M., McHaffie, J. G. & Stein, B. E. (1996b) Nociceptive neurones in rat superior colliculus. II. Effects of lesions to the contralateral descending output pathway on nocifensive behaviours. Experimental Brain Research 109(2):197208.Google Scholar
Reix, P., St-Hilaire, M. & Praud, J.-P. (2007) Laryngeal sensitivity in the neonatal period: From bench to bedside. Pediatric Pulmonology 42(8):674–82. Available at: https://doi.org/10.1002/ppul.20645.Google Scholar
Richardson, K. (1998) The origins of human potential: Evolution, development, and psychology. Psychology Press.Google Scholar
Richardson, P. A. & Bailey, E. F. (2010) Tonically discharging genioglossus motor units show no evidence of rate coding with hypercapnia. Journal of Neurophysiology 103(3):1315–21. Available at: https://doi.org/10.1152/jn.00686.2009.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. (1996) Premotor cortex and the recognition of motor actions. Cognitive Brain Research, Mental Representations of Motor Acts 3(2):131–41.Google Scholar
Rochat, P. (1989) Object manipulation and exploration in 2-to 5-month-old infants. Developmental Psychology 25(6):871.Google Scholar
Rodenstein, D. O., Perlmutter, N. & Stănescu, D. C. (1985) Infants are not obligatory nasal breathers. The American Review of Respiratory Disease 131(3):343–47.Google Scholar
Rosenberg, S. S. & Spitzer, N. C. (2011) Calcium signaling in neuronal development. Cold Spring Harbor Perspectives in Biology 3(10):a004259.Google Scholar
Ruangkittisakul, A., Schwarzacher, S. W., Secchia, L., Ma, Y., Bobocea, N., Poon, B. Y., Funk, D. G. & Ballanyi, K. (2008) Generation of eupnea and sighs by a spatiochemically organized inspiratory network. Journal of Neuroscience 28(10):2447–58. Available at: https://doi.org/10.1523/JNEUROSCI.1926-07.2008.Google Scholar
Sakamoto, K., Nakata, H., Inui, K., Perrucci, M. G., Del Gratta, C., Kakigi, R. & Romani, G. L. (2010) A difference exists in somatosensory processing between the anterior and posterior parts of the tongue. Neuroscience Research 66(2):173–79. Available at: https://doi.org/10.1016/j.neures.2009.10.013.Google Scholar
Sarnat, H. (2015) Functions of the corticospinal and corticobulbar tracts in the human newborn. Journal of Pediatric Neurology 01(01):38. Available at: https://doi.org/10.1055/s-0035-1557162.Google Scholar
Sarnat, H. B. (1989) Do the corticospinal and corticobulbar tracts mediate functions in the human newborn? The Canadian journal of neurological sciences. Le Journal Canadien des Sciences Neurologiques 16(2):157–60.Google Scholar
Sarnat, H. B. (2003) Functions of the corticospinal and corticobulbar tracts in the human newborn. Journal of Pediatric Neurology 1(01):38.Google Scholar
Sasaki, C. T., Levine, P. A., Laitman, J. T. & Crelin, E. S. (1977) Postnatal descent of the epiglottis in man. A preliminary report. Archives of otolaryngology (Chicago, Ill: 1960) 103(3):169–71.Google Scholar
Schaal, B. (2009) Mammary olfactory signalisation in females and odor processing in neonates: Ways evolved by rabbits and humans. Behavioural Brain Research 200(2):346–58.Google Scholar
Schiller, P. H., Sandell, J. H. & Maunsell, J. H. (1987) The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. Journal of Neurophysiology 57(4):1033–49. Available at: https://doi.org/10.1152/jn.00304.2015.Google Scholar
Schneider, S. A., Aggarwal, A., Bhatt, M., Dupont, E., Tisch, S., Limousin, P. & Bhatia, K. P. (2006) Severe tongue protrusion dystonia: Clinical syndromes and possible treatment. Neurology 67(6):940–43. Available at: https://doi.org/10.1212/01.wnl.0000237446.06971.72.Google Scholar
Sears, V. W., Castell, J. A. & Castell, D. O. (1990) Comparison of effects of upright versus supine body position and liquid versus solid bolus on esophageal pressures in normal humans. Digestive Diseases and Sciences 35(7):857–64. Available at: https://doi.org/10.1007/BF01536799.Google Scholar
Serrano, J. M., Iglesias, J. & Loeches, A. (1992) Visual discrimination and recognition of facial expressions of anger, fear, and surprise in 4- to 6-month-old infants. Developmental Psychobiology 25(6):411–25. Available at: https://doi.org/10.1002/dev.420250603.Google Scholar
Shapiro, B. L., Gorlin, R. J., Redman, R. S. & Bruhl, H. H. (1967) The palate and Down's syndrome. New England Journal of Medicine 276(26):1460–63. Available at: https://doi.org/10.1056/NEJM196706292762603.Google Scholar
Shatz, C. J. (2012) Dynamic interplay between nature and nurture in brain wiring. L'annuaire du Collège de France (111):894–96.Google Scholar
Shatz, C. J., Chun, J. & Luskin, M. B. (1988) The role of the subplate in the development of the mammalian telencephalon. Cerebral Cortex 7:3558.Google Scholar
Siegel, F., Heimel, J. A., Peters, J. & Lohmann, C. (2012) Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo. Current Biology 22(3):253–58. Available at: https://doi.org/10.1016/j.cub.2011.12.026.Google Scholar
Simpson, E. A., Murray, L., Paukner, A. & Ferrari, P. F. (2014a) The mirror neuron system as revealed through neonatal imitation: Presence from birth, predictive power and evidence of plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences 369(1644):20130289. Available at: https://doi.org/10.1098/rstb.2013.0289.Google Scholar
Smith, J. C., Abdala, A. P. L., Rybak, I. A. & Paton, J. F. R. (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1529):2577–87. Available at: https://doi.org/10.1098/rstb.2009.0081.Google Scholar
Smith, J. C., McClung, J. R. & Goldberg, S. J. (2005) Postnatal development of hypoglossal motoneurons that innervate the hyoglossus and styloglossus muscles in rat. The Anatomical Record Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 285A(1):628–33. Available at: https://doi.org/10.1002/ar.a.20204.Google Scholar
Smith, K. K. & Kier, W. M. (1985) Tongue tentacles and trunks: The biomechanics of movement in muscular hydrostats. Zoological Journal of the Linnean Society 83(4):307324.Google Scholar
Smith, K. K. & Kier, W. M. (1989) Trunks, tongues, and tentacles: Moving with skeletons of muscle. American Scientist 77(1):2835.Google Scholar
Sörös, P., Inamoto, Y. & Martin, R. E. (2009) Functional brain imaging of swallowing: An activation likelihood estimation meta-analysis. Human Brain Mapping 30(8):2426–39. Available at: https://doi.org/10.1002/hbm.20680.Google Scholar
Sörös, P., Lalone, E., Smith, R., Stevens, T., Theurer, J., Menon, R. S. & Martin, R. E. (2008) Functional MRI of oropharyngeal air-pulse stimulation. Neuroscience 153(4):1300–308. https://doi.org/10.1016/j.neuroscience.2008.02.079.Google Scholar
Sparks, D. L. & Hartwich-Young, R. (1989) The deep layers of the superior colliculus. Reviews of Oculomotor Research 3:213–55.Google Scholar
Spitzer, N. C. (2012) Activity-dependent neurotransmitter respecification. Nature Reviews Neuroscience 13(2):94106. Available at: https://doi.org/10.1038/nrn3154.Google Scholar
Spitzer, N. C. & Borodinsky, L. N. (2008) Implications of activity-dependent neurotransmitter-receptor matching. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1495):1393–99. Available at: https://doi.org/10.1098/rstb.2007.2257.Google Scholar
Spitzer, N. C., Gu, X. & Olson, E. (1994) Action potentials, calcium transients and the control of differentiation of excitable cells. Current Opinion in Neurobiology 4(1):7077. Available at: https://doi.org/10.1016/0959-4388(94)90034-5.Google Scholar
Spitzer, N. C., Root, C. M. & Borodinsky, L. N. (2004) Orchestrating neuronal differentiation: Patterns of Ca2+ spikes specify transmitter choice. Trends in Neurosciences 27(7):415–21. Available at: https://doi.org/10.1016/j.tins.2004.05.003.Google Scholar
Sretavan, D. W. & Shatz, C. J. (1986) Prenatal development of retinal ganglion cell axons: Segregation into eye-specific layers within the cat's lateral geniculate nucleus. The Journal of Neuroscience 6(1):234–51.Google Scholar
Sretavan, D. W., Shatz, C. J. & Stryker, M. P. (1988) Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature 336(6198):468–71. Available at: https://doi.org/10.1038/336468a0.Google Scholar
St-Hilaire, M., Samson, N., Nsegbe, E., Duvareille, C., Moreau-Bussière, F., Micheau, P. & Praud, J.-P. (2007) Postnatal maturation of laryngeal chemoreflexes in the preterm lamb. Journal of Applied Physiology 102(4):1429–38. Available at: https://doi.org/10.1152/japplphysiol.00977.2006.Google Scholar
Streri, A. (1993) Seeing, reaching, touching: The relations between vision and touch in infancy, trans. Pownall, T. & Kingerlee, S.. Harvester Wheatsheaf.Google Scholar
Streri, A. & Molina, M. (1994) Constraints on intermodal transfer between touch and vision in infancy. In: The development of intersensory perception: Comparative perspectives, ed. Lewkowicz, D. J. & Lickliter, R., pp. 285307. Lawrence Erlbaum.Google Scholar
Streri, A. & Pêcheux, M.-G. (1986) Vision-to-touch and touch-to-vision transfer of form in 5-month-old infants. British Journal of Developmental Psychology 4(2):161–67. Available at: https://doi.org/10.1111/j.2044-835X.1986.tb01007.x.Google Scholar
Stuphorn, V., Bauswein, E. & Hoffmann, K.-P. (2000) Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. Journal of Neurophysiology 83(3):1283–99.Google Scholar
Tailby, C., Cheong, S. K., Pietersen, A. N., Solomon, S. G. & Martin, P. R. (2012) Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys. The Journal of Physiology 590(Pt. 16):4061–77. Available at: https://doi.org/10.1113/jphysiol.2012.230409.Google Scholar
Takemoto, H. (2001) Morphological analyses of the human tongue musculature for three-dimensional modeling. Journal of Speech, Language, and Hearing Research 44(1):95107.Google Scholar
Thach, B. (2010) Laryngeal chemoreflexes and development. Paediatric Respiratory Reviews 11(4):213.Google Scholar
Thach, B. T. (2001) Maturation and transformation of reflexes that protect the laryngeal airway from liquid aspiration from fetal to adult life. American Journal of Medicine 111 (Suppl. 8A):69S77S.Google Scholar
Thach, B. T. (2007) Maturation of cough and other reflexes that protect the fetal and neonatal airway. Pulmonary Pharmacology and Therapeutics 20(4):365–70. Available at: https://doi.org/10.1016/j.pupt.2006.11.011.Google Scholar
Thelen, E. (1979) Rhythmical stereotypies in normal human infants. Animal Behaviour 27(Pt. 3):699715.Google Scholar
Thelen, E. (1981b) Rhythmical behavior in infancy: An ethological perspective. Developmental Psychology 17(3):237–57. Available at: https://doi.org/10.1037/0012-1649.17.3.237.Google Scholar
Thelen, E., Fisher, D. M. & Ridley-Johnson, R. (1984) The relationship between physical growth and a newborn reflex. Infant Behavior and Development 7(4):479–93. Available at: https://doi.org/10.1016/S0163-6383(84)80007-7.Google Scholar
Thelen, E., Schöner, G., Scheier, C. & Smith, L. B. (2001) The dynamics of embodiment: A field theory of infant perseverative reaching. Behavioral and Brain Sciences 24(01):134. Available at: https://doi.org/10.1017/S0140525X01003910.Google Scholar
Thelen, E. & Ulrich, B. D. (1991) Hidden skills: A dynamic systems analysis of treadmill stepping during the first year. Monographs of the Society for Research in Child Development 56(1):i103. Available at: https://doi.org/10.2307/1166099.Google Scholar
Thexton, A. J. (1992) Mastication and swallowing: An overview. British Dental Journal 173(6):197206.Google Scholar
Thexton, A. J. & Crompton, A. W. (1998) The control of swallowing. In: The scientific basis of eating. Frontiers of Oral Biology, vol. 9, ed. Linden, R. W. A., pp. 168222. Karger.Google Scholar
Thexton, A. J., Crompton, A. W. & German, R. Z. (2007) Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. Journal of Applied Physiology 102(2):587600. Available at: doi.org/10.1152/japplphysiol.00456.2006.Google Scholar
Thompson, C. (1976) The palate in Down's syndrome. Dental Assistant 45(10):1620.Google Scholar
Thorndike, E. L. (1898) Animal intelligence: An experimental study of the associative processes in animals. In: The Psychological Review: Monograph Supplements 2(4), ed. Cattell, J. M. & Baldwin, J. M., pp. 1109. MacMillan.Google Scholar
Tolner, E. A., Sheikh, A., Yukin, A. Y., Kaila, K. & Kanold, P. O. (2012) Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. Journal of Neuroscience 32(2):692702. Available at: https://doi.org/10.1523/JNEUROSCI.1538-11.2012.Google Scholar
Torborg, C. L. & Feller, M. B. (2005) Spontaneous patterned retinal activity and the refinement of retinal projections. Progress in Neurobiology 76(4):213–35. Available at: https://doi.org/10.1016/j.pneurobio.2005.09.002.Google Scholar
Trevarthen, C. & Aitken, K. J. (2001) Infant intersubjectivity: Research, theory, and clinical applications. Journal of Child Psychology and Psychiatry 42(1):348. Available at: https://doi.org/10.1111/1469-7610.00701.Google Scholar
Triplett, J. W. (2014) Molecular guidance of retinotopic map development in the midbrain. Current Opinion in Neurobiology 24(1):712. Available at: https://doi.org/10.1016/j.conb.2013.07.006.Google Scholar
Triplett, J. W., Phan, A., Yamada, J. & Feldheim, D. A. (2012) Alignment of multimodal sensory input in the superior colliculus through a gradient-matching mechanism. Journal of Neuroscience 32(15):5264–71. Available at: https://doi.org/10.1523/JNEUROSCI.0240-12.2012.CrossRefGoogle ScholarPubMed
Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E. & Bergles, D. E. (2007) The origin of spontaneous activity in the developing auditory system. Nature 450(7166):5055. Available at: https://doi.org/10.1038/nature06233.Google Scholar
Tryba, A. K., Peña, F., Lieske, S. P., Viemari, J.-C., Thoby-Brisson, M. & Ramirez, J.-M. (2008) Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities. Journal of Neurophysiology 99(5):2114–25. Available at: https://doi.org/10.1152/jn.01192.2007.Google Scholar
van Boxtel, M. P. J., Bosma, H., Jolles, J. & Vreeling, F. W. (2006) Prevalence of primitive reflexes and the relationship with cognitive change in healthy adults: A report from the Maastricht Aging Study. Journal of Neurology 253(7):935–41. Available at: https://doi.org/10.1007/s00415-006-0138-7.Google Scholar
Varendi, H. & Porter, R. H. (2001) Breast odour as the only maternal stimulus elicits crawling towards the odour source. Acta Paediatrica 90(4):372–75.Google Scholar
Vinter, A. (1986) The role of movement in eliciting early imitations. Child Development 57(1):6671. Available at: https://doi.org/10.2307/1130638.Google Scholar
von Hofsten, C. (1989) Mastering reaching and grasping: The development of manual skills in infancy. In: Advances in psychology, vol. 61, Perspectives on the Coordination of Movement, ed. Wallace, S. A., pp. 223–58. North-Holland.Google Scholar
Vreeling, F., Houx, P. & Jolles, J. (1995) Primitive reflexes in Alzheimer's disease and vascular dementia. Journal of Geriatric Psychiatry and Neurology 8:111–17.Google Scholar
Wallace, M. T. & Stein, B. E. (1997) Development of multisensory neurons and multisensory integration in cat superior colliculus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 17(7):2429–44.Google Scholar
Warp, E., Agarwal, G., Wyart, C., Friedmann, D., Oldfield, C. S., Conner, A., Dele Bene, F., Arrenberg, A. B., Baier, H. & Isacoff, E. Y. (2012) Emergence of patterned activity in the developing zebrafish spinal cord. Current Biology 22(2):92102.Google Scholar
Wass, S. V. & Smith, T. J. (2014) Individual differences in infant oculomotor behavior during the viewing of complex naturalistic scenes. Infancy 19(4):352–84. Available at: https://doi.org/10.1111/infa.12049.Google Scholar
Weissengruber, G. E., Forstenpointner, G., Peters, G., Kübber-Heiss, A. & Fitch, W. T. (2002) Hyoid apparatus and pharynx in the lion (Panthera leo), jaguar (Panthera Onca), tiger (Panthera tigris), cheetah (Acinonyx jubatus) and domestic cat (Felis silvestris F. catus). Journal of Anatomy 201(3):195209. Available at: https://doi.org/10.1046/j.1469-7580.2002.00088.x.Google Scholar
Werner, W., Dannenberg, S. & Hoffmann, K. P. (1997a) Arm-movement-related neurons in the primate superior colliculus and underlying reticular formation: Comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching. Experimental Brain Research 115(2):191205. Available at: https://doi.org/10.1007/PL00005690.Google Scholar
Werner, W., Hoffmann, K.-P. & Dannenberg, S. (1997b) Anatomical distribution of arm-movement-related neurons in the primate superior colliculus and underlying reticular formation in comparison with visual and saccadic cells. Experimental Brain Research 115(2):206–16. Available at: https://doi.org/10.1007/PL00005691.Google Scholar
Whelan, P., Bonnot, A. & O'Donovan, M. J. (2000) Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. Journal of Neurophysiology 84(6):2821–33.Google Scholar
Widmer, C. G., English, A. W. & Morris-Wiman, J. (2007) Developmental and functional considerations of masseter muscle partitioning. Archives of Oral Biology 52(4):305–08. Available at: https://doi.org/10.1016/j.archoralbio.2006.09.015.Google Scholar
Wiesel, T. N. & Hubel, D. H. (1963) Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geninculate body. Journal of Neurophysiology 26:978–93.Google Scholar
Wiesel, T. N. & Hubel, D. H. (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology 28(6):1029–40.Google Scholar
Wolfram, V. & Baines, R. A. (2013) Blurring the boundaries: Developmental and activity-dependent determinants of neural circuits. Trends in Neurosciences 36(10):610–19. Available at: https://doi.org/10.1016/j.tins.2013.06.006.Google Scholar
Wong, R. O. L., Meister, M. & Shatz, C. J. (1993) Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11(5):923–38. Available at: https://doi.org/10.1016/0896-6273(93)90122-8.Google Scholar
Xu, J., Sun, X., Zhou, X., Zhang, J. & Yu, L. (2014a) The cortical distribution of multisensory neurons was modulated by multisensory experience. Neuroscience 272:19. Available at: https://doi.org/10.1016/j.neuroscience.2014.04.068.Google Scholar
Xu, J., Yu, L., Rowland, B. A., Stanford, T. R. & Stein, B. E. (2014b) Noise-rearing disrupts the maturation of multisensory integration. The European Journal of Neuroscience 39(4):602–13. Available at: https://doi.org/10.1111/ejn.12423.Google Scholar
Xu, J., Yu, L., Stanford, T. R., Rowland, B. A. & Stein, B. E. (2015) What does a neuron learn from multisensory experience? Journal of Neurophysiology 113(3):883–89. Available at: https://doi.org/10.1152/jn.00284.2014.Google Scholar
Yamane, A. (2005) Embryonic and postnatal development of masticatory and tongue muscles. Cell Tissue Research 322(2):183–89. Available at: https://doi.org/10.1007/s00441-005-0019-x.Google Scholar
Yigiter, A. B. & Kavak, Z. N. (2006) Normal standards of fetal behavior assessed by four-dimensional sonography. Journal of Maternal-Fetal Neonatal Medicine 19(11):707–21. Available at: https://doi.org/10.1080/14767050600924129.Google Scholar
Zukow-Goldring, P. (1997) A social ecological realist approach to the emergence of the lexicon: Educating attention to amodal invariants in gesture and speech. In: Evolving explanations of development, ed. Dent-Reed, C. & Zukow-Goldring, P., pp. 199250. American Psychological Association.Google Scholar