Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T22:46:27.441Z Has data issue: false hasContentIssue false

Cognitive control, dynamic salience, and the imperative toward computational accounts of neuromodulatory function

Published online by Cambridge University Press:  05 January 2017

Christopher Michael Warren
Affiliation:
Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, 2311 EZ, Leiden, The Netherlandsc.m.warren@fsw.leidenuniv.nlp.murphy@fsw.leidenuniv.nlsnieuwenhuis@fsw.leidenuniv.nlhttp://www.temporalattentionlab.com
Peter Richard Murphy
Affiliation:
Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, 2311 EZ, Leiden, The Netherlandsc.m.warren@fsw.leidenuniv.nlp.murphy@fsw.leidenuniv.nlsnieuwenhuis@fsw.leidenuniv.nlhttp://www.temporalattentionlab.com
Sander Nieuwenhuis
Affiliation:
Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, 2311 EZ, Leiden, The Netherlandsc.m.warren@fsw.leidenuniv.nlp.murphy@fsw.leidenuniv.nlsnieuwenhuis@fsw.leidenuniv.nlhttp://www.temporalattentionlab.com

Abstract

We draw attention to studies indicating that phasic arousal increases interference effects in tasks necessitating the recruitment of cognitive control. We suggest that arousal-biased competition models such as GANE (glutamate amplifies noradrenergic effects) may be able to explain these findings by taking into account dynamic, within-trial changes in the relative salience of task-relevant and task-irrelevant features. However, testing this hypothesis requires a computational model.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Böckler, A., Alpay, G. & Stürmer, B. (2011) Accessory stimuli affect the emergence of conflict, not conflict control: A Simon-task ERP study. Experimental Psychology 58:102109. doi: 10.1027/1618-3169/a000073.CrossRefGoogle ScholarPubMed
Callejas, A., Lupiáñez, J., Funes, M. J. & Tudela, P. (2005) Modulations among the alerting, orienting and executive control networks. Experimental Brain Research 167:2737. doi: 10.1007/s00221-005-2365-z.CrossRefGoogle ScholarPubMed
Callejas, A., Lupiánez, J. & Tudela, P. (2004) The three attentional networks: On their independence and interactions. Brain and Cognition 54(3):225–27.CrossRefGoogle ScholarPubMed
Cohen, J. D., Servan-Schreiber, D. & McClelland, J. L. (1992) A parallel distributed processing approach to automaticity. The American Journal of Psychology 105:239–69. doi: 10.2307/1423029.CrossRefGoogle ScholarPubMed
Correa, A., Cappucci, P., Nobre, A. C. & Lupiáñez, J. (2010) The two sides of temporal orienting: Facilitating perceptual selection, disrupting response selection. Experimental Psychology 57:142–48. doi: 10.1027/1618-3169/a000018.CrossRefGoogle ScholarPubMed
Eckhoff, P., Wong-Lin, K. F. & Holmes, P. (2009) Optimality and robustness of a biophysical decision-making model under norepinephrine modulation. Journal of Neuroscience 29(13):4301–11.CrossRefGoogle ScholarPubMed
Eldar, E., Cohen, J. D. & Niv, Y. (2013) The effects of neural gain on attention and learning. Nature Neuroscience 16(8):1146–53.CrossRefGoogle ScholarPubMed
Fan, J., Gu, X., Guise, K. G., Liu, X., Fossella, J., Wang, H. & Posner, M. I. (2009) Testing the behavioral interaction and integration of attentional networks. Brain and Cognition 70: 209–20. doi: 10.1016/j.bandc.2009.02.002.CrossRefGoogle ScholarPubMed
Fan, J., McCandliss, B. D., Sommer, T., Raz, A. & Posner, M. I. (2002) Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience 14(3):340—47.CrossRefGoogle ScholarPubMed
Fischer, R., Plessow, F. & Kiesel, A. (2010) Auditory warning signals affect mechanisms of response selection: Evidence from a Simon task. Experimental Psychology 57:8997. doi: 10.1027/1618-3169/a000012.CrossRefGoogle ScholarPubMed
Gilzenrat, M. S., Holmes, B. D., Rajkowski, J., Aston-Jones, G. & Cohen, J. D. (2002) Simplified dynamics in a model of noradrenergic modulation of cognitive performance. Neural Networks 15:647–63.CrossRefGoogle Scholar
Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W. & Donchin, E. (1988) Pre- and post-stimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance 14:331–44. doi: 10.1037/0096-1523.14.3.331.Google Scholar
Hommel, B. (1994) Spontaneous decay of response-code activation. Psychological Research 56:261–68. doi: 10.1007/BF00419656.CrossRefGoogle ScholarPubMed
Klein, R. M. & Ivanoff, J. (2011) The components of visual attention and the ubiquitous Simon effect. Acta Psychologica 136:225–34. doi: 10.1016/j.actpsy.2010.08.003.CrossRefGoogle ScholarPubMed
MacLeod, J. W., Lawrence, M. A., McConnell, M. M., Eskes, G. A., Klein, R. M. & Shore, D. I. (2010) Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology 24(5):637.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S. & de Kleijn, R. (2013) The impact of alertness on cognitive control. Journal of Experimental Psychology: Human Perception and Performance 39(6):1797.Google ScholarPubMed
Nieuwenhuis, S., Gilzenrat, M. S., Holmes, B. D. & Cohen, J. D. (2005b) The role of the locus coeruleus in mediating the attentional blink: A neurocomputational theory. Journal of Experimental Psychology: General 134:291307.CrossRefGoogle ScholarPubMed
Sakaki, M., Fryer, K. & Mather, M. (2014a) Emotion strengthens high priority memory traces but weakens low priority memory traces. Psychological Science 25(2):387–95. doi: 10.1177/0956797613504784 CrossRefGoogle ScholarPubMed
Servan-Schreiber, D., Printz, H. & Cohen, J. D. (1990) A network model of catecholamine effects: Gain, signal-to-noise ratio, and behavior. Science 249(4971):892–95.CrossRefGoogle ScholarPubMed
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. (1999) The role of locus coeruleus in the regulation of cognitive performance. Science 283(5401):549–54.CrossRefGoogle ScholarPubMed
Wang, X. J. (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36(5):955–68.CrossRefGoogle ScholarPubMed
Weinbach, N. & Henik, A. (2012) The relationship between alertness and executive control. Journal of Experimental Psychology: Human Perception and Performance 38:1530–40. doi: 10.1037/a0027875.Google ScholarPubMed
Weinbach, N. & Henik, A. (2014) Alerting enhances attentional bias for salient stimuli: Evidence from a global/local processing task. Cognition 133(2):414–19.CrossRefGoogle ScholarPubMed
White, C. N., Ratcliff, R. & Starns, J. J. (2011) Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology 63:210–38. doi: 10.1016/j.cogpsych.2011.08.001.CrossRefGoogle ScholarPubMed