No CrossRef data available.
Article contents
The importance of constraints on constraints
Published online by Cambridge University Press: 11 March 2020
Abstract
The “resource-rational” approach is ambitious and worthwhile. A shortcoming of the proposed approach is that it fails to constrain what counts as a constraint. As a result, constraints used in different cognitive domains often have nothing in common. We describe an alternative framework that satisfies many of the desiderata of the resource-rational approach, but in a more disciplined manner.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2020
References
Bates, C. J. & Jacobs, R. A. (2019) Efficient data compression leads to categorical bias in perception and perceptual memory. In: Proceedings of the 41st Annual Meeting of the Cognitive Science Society, July 24–27, Montreal, Canada.Google Scholar
Bates, C. J., Lerch, R. A., Sims, C. R. & Jacobs, R. A. (2019) Adaptive allocation of human visual working memory capacity during statistical and categorical learning. Journal of Vision 19(2):11, 1–23.CrossRefGoogle ScholarPubMed
Botvinick, M., Weinstein, A., Solway, A. & Barto, A. (2015) Reinforcement learning, efficient coding, and the statistics of natural tasks. Current Opinion in Behavioral Sciences 5:71–77.CrossRefGoogle Scholar
Lerch, R. A. & Sims, C. R. (2019) Rate-distortion theory and computationally rational reinforcement learning. In: Proceedings of Reinforcement Learning and Decision Making (RLDM) 2019, July 7–10, Montreal, Canada.Google Scholar
Sims, C. R. (2016) Rate-distortion theory and human perception. Cognition 152:181–98. doi:10.1016/j.cognition.2016.03.020.CrossRefGoogle ScholarPubMed
Sims, C. R. (2018) Efficient coding explains the universal law of generalization in human perception. Science 360:6389, 652–56.CrossRefGoogle ScholarPubMed
Sims, C. R., Jacobs, R. A. & Knill, D. C. (2012) An ideal observer analysis of visual working memory. Psychological Review 119(4):807–30. doi:10.1037/a0029856.CrossRefGoogle ScholarPubMed
Target article
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources
Related commentaries (25)
Another claim for cognitive history
Beginning with biology: “Aspects of cognition” exist in the service of the brain's overall function as a resource-regulator
Can resources save rationality? “Anti-Bayesian” updating in cognition and perception
Cognitively bounded rational analyses and the crucial role of theories of subjective utility
Computational limits don't fully explain human cognitive limitations
Generalization of the resource-rationality principle to neural control of goal-directed movements
Heuristics and the naturalistic fallacy
Holistic resource-rational analysis
Multiple conceptions of resource rationality
Opportunities and challenges integrating resource-rational analysis with developmental perspectives
Opportunities for emotion and mental health research in the resource-rationality framework
Optimal, resource-rational or sub-optimal? Insights from cognitive development
Representing utility and deploying the body
Resource-rational analysis versus resource-rational humans
Resource-rationality and dynamic coupling of brains and social environments
Resource-rationality as a normative standard of human rationality
Resource-rationality beyond individual minds: the case of interactive language use
Sampling as a resource-rational constraint
The biology of emotion is missing
The evolutionary foundations of resource-rational analysis
The importance of constraints on constraints
Towards a quantum-like cognitive architecture for decision-making
Uncovering cognitive constraints is the bottleneck in resource-rational analysis
What are the appropriate axioms of rationality for reasoning under uncertainty with resource-constrained systems?
What is the purpose of cognition?
Author response
Advancing rational analysis to the algorithmic level