No CrossRef data available.
Article contents
Why don't probiotics work?
Published online by Cambridge University Press: 15 July 2019
Abstract
The conclusions reached by Hooks et al. urge the field to investigate the complex multipathway interactions between the microbiome and the gut-brain axis to understand the potential causal relationships involved. Claims in the field of microbiota-gut-brain research remain problematic without appropriate controls and adequate statistical power. A crucial question that follows from the authors' extensive review is: “Why don't probiotics work?”
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2019
References
European Commission. (2016) EU register of nutrition and health claims made on foods. Available at: http://ec.europa.eu/food/safety/labelling_nutrition/claims/register.Google Scholar
Korte, S. M., De Kloet, E. R., Buwalda, B., Bouman, S. D. & Bohus, B. (1996) Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test. European Journal of Pharmacology 301(1–3):19–25.Google Scholar
Korte, S. M., Koolhaas, J. M., Wingfield, J. C. & McEwen, B. S. (2005) The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience & Biobehavioral Reviews 29(1):3–38.Google Scholar
Korte-Bouws, G. A. H., van Heesch, F., Westphal, K. G. C., Ankersmit, L. M. J., van Oosten, E. M., Güntürkün, O. & Korte, S. M. (2018) Bacterial lipopolysaccharide increases serotonin metabolism in both medial prefrontal cortex and nucleus accumbens in male wild type rats, but not in serotonin transporter knockout rats. Pharmaceuticals 11(3):66.Google Scholar
Popper, K.R. (1963) Science as falsification. In: Conjectures and refutations, ed. Popper, K. R., pp. 33–39. Routledge/Keagan Paul.Google Scholar
Suez, J., Zmora, N., Zilberman-Schapira, G., Mor, U., Dori-Bachash, M., Bashiardes, S., Zur, M., Regev-Lehavi, D., Ben-Zeev, Brik R., Federici, S., Horn, M., Cohen, Y., Moor, A. E., Zeevi, D., Korem, T., Kotler, E., Harmelin, A., Itzkovitz, S., Maharshak, N., Shibolet, O., Pevsner-Fischer, M., Shapiro, H., Sharon, I., Halpern, Z., Segal, E. & Elinav, E. (2018) Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174(6):1406–23.Google Scholar
Timmerman, H. M., Koning, C. J., Mulder, L., Rombouts, F. M. & Beynen, A. C. (2004) Monostrain, multistrain and multispecies probiotics: A comparison of functionality and efficacy. International Journal of Food Microbiology 96(3):219–33.Google Scholar
van Heesch, F., Prins, J., Konsman, J. P., Westphal, K. G., Olivier, B., Kraneveld, A. D. & Korte, S. M. (2013) Lipopolysaccharide-induced anhedonia is abolished in male serotonin transporter knockout rats: An intracranial self-stimulation study. Brain, Behavior, and Immunity 29:98–103.Google Scholar
Zmora, N., Zilberman-Schapira, G., Suez, J., Mor, U., Dori-Bachash, M., Bashiardes, S., Kotler, E., Zur, M., Regev-Lehavi, D., Brik, R. B., Federici, S., Cohen, Y., Linevsky, R., Rothschild, D., Moor, A. E., Ben-Moshe, S., Harmelin, A., Itzkovitz, S., Maharshak, N., Shibolet, O., Shapiro, H., Pevsner-Fischer, M., Sharon, I., Halpern, Z., Segal, E. & Elinav, E. (2018) Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174(6):1388–405. Available at: https://doi.org/10.1016/j.cell.2018.08.041.Google Scholar
Target article
Microbiota-gut-brain research: A critical analysis
Related commentaries (19)
A call for mapping the development of the microbiota-gut-brain axis during human infancy
Beyond a gut feeling: How the immune system impacts the effect of gut microbiota in neurodevelopment
Combining integrated systems-biology approaches with intervention-based experimental design provides a higher-resolution path forward for microbiome research
Increasing reproducibility and interpretability of microbiota-gut-brain studies on human neurocognition and intermediary microbial metabolites
Inter-individual variation shapes the human microbiome
Microbiota-gut-brain research: A plea for an interdisciplinary approach and standardization
Neuropeptide-like signaling in the microbiota-gut-brain axis
Neurotropic enteroviruses co-opt “fair-weather-friend” commensal gut microbiota to drive host infection and central nervous system disturbances
Nourishing the gut microbiota: The potential of prebiotics in microbiota-gut-brain axis research
On the potential distortions of highly cited papers in emerging research fields: A critical appraisal
Practical guidelines for gut microbiome analysis in microbiota-gut-brain axis research
Putting microbiota-gut-brain research in a systemic developmental context: Focus on breast milk
Scientific claims are constitutive of common sense about health
Stress and microbiota: Between biology and psychology
The contribution of microbiology to neuroscience: More complex than it seems?
The parent-offspring microbiome and neurobehavioral development
Why a developmental cognitive neuroscience approach may be key for future-proofing microbiota-gut-brain research
Why don't probiotics work?
Why microbes, not microbiomes, are better causal explanations in gut-brain research
Author response
Causal clarity and deeper dimensions in microbiota-gut-brain research