No CrossRef data available.
Article contents
Putting microbiota-gut-brain research in a systemic developmental context: Focus on breast milk
Published online by Cambridge University Press: 15 July 2019
Abstract
The microbiota-gut-brain (MGB) field holds huge potential for understanding behavioral development and informing effective early interventions for psychological health. To realize this potential, factors that shape the MGB axis in infancy (i.e., breast milk) must be integrated into a systemic framework that considers salient behavioral outcomes. This is best accomplished applying network analyses in large prospective, longitudinal investigations in humans.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2019
References
Arentsen, T., Qian, Y., Gkotzis, S., Femenia, T., Wang, T., Udekwu, K., Forssberg, H. & Diaz Heijtz, R. (2017) The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Molecular Psychiatry 22(2):257–66. Available at: https://doi.org/10.1038/mp.2016.182.Google Scholar
Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., Khan, M. T., Zhang, J., Li, J., Xiao, L., Al-Aama, J., Zhang, D., Lee, Y. S., Kotowska, D., Colding, C., Tremaroli, V., Yin, Y., Bergman, S., Xu, X., Madsen, L., Kristiansen, K., Dahlgren, J. & Wang, J. (2015) Erratum: Dynamics and stabilization of the human gut microbiome during the first year of life (Cell Host & Microbe 17, 690–703; May 13, 2015). Cell Host and Microbe 17(6):P852. Available at: https://doi.org/10.1016/j.chom.2015.05.012.Google Scholar
Carlson, A. L., Xia, K., Azcarate-Peril, M. A., Goldman, B. D., Ahn, M., Styner, M. A., Thompson, A. L., Geng, X., Gilmore, J. H. & Knickmeyer, R. C. (2018) Infant gut microbiome associated with cognitive development. Biological Psychiatry 83(2):148–59. Available at: https://doi.org/10.1016/j.biopsych.2017.06.021.Google Scholar
Christian, L. M., Galley, J. D., Hade, E. M., Schoppe-Sullivan, S., Kamp Dush, C. & Bailey, M. T. (2015) Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity 45:118–27. Availability at: https://doi.org/10.1016/j.bbi.2014.10.018.Google Scholar
De Palma, G., Lynch, M. D. J., Lu, J., Dang, V. T., Deng, Y., Jury, J., Umeh, G., Miranda, P. M., Pigrau-Pastor, M., Sidani, S., Pinto-Sanchez, M.., Philip, V., McLean, P. G., Hagelsieb, M. G., Surette, M. G., Bergonzelli, G. E., Verdu, E. F., Britz-Mckibbin, P., Neufeld, J. D., Collins, S. M. & Bercik, P. (2017) Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Science Translational Medicine 9(379):1–15. Available at: https://doi.org/10.1126/scitranslmed.aaf6397.Google Scholar
Diaz Heijtz, R. (2016) Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior. Seminars in Fetal and Neonatal Medicine 21(6):410–17. Available at: https://doi.org/10.1016/j.siny.2016.04.012.Google Scholar
Grey, K. R., Davis, E. P., Sandman, C. A. & Glynn, L. M. (2013) Human milk cortisol is associated with infant temperament. Psychoneuroendocrinology 38(7):1178–85. Available at: https://doi.org/10.1016/j.psyneuen.2012.11.002.Google Scholar
Isaacs, E. B., Fischl, B. R., Quinn, B. T., Chong, W. K., Gadian, D. G. & Lucas, A. (2010) Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatric Research 67:357–62. Available at: https://doi.org/10.1203/PDR.0b013e3181d026da.Google Scholar
Jost, T., Lacroix, C., Braegger, C. & Chassard, C. (2015) Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutrition Reviews 73(7):426–37. Available at: https://doi.org/10.1093/nutrit/nuu016.Google Scholar
Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F. & Dinan, T. G. (2016) Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research 82:109–18. Available at: https://doi.org/10.1016/j.jpsychires.2016.07.019.Google Scholar
Kelsey, C., Dreisbach, C., Alhusen, J. & Grossmann, T. (2019) A primer on investigating the role of the microbiome in brain and cognitive development. Developmental Psychobiology. First published online October 12, 2018. Available at: https://doi.org/10.1002/dev.21778.Google Scholar
Luczynski, P., Neufeld, K. A. M. V., Oriach, C. S., Clarke, G., Dinan, T. G. & Cryan, J. F. (2016) Growing up in a bubble: Using germ-free animals to assess the influence of the gut microbiota on brain and behavior. International Journal of Neuropsychopharmacology 19(8):1–17. Available at: https://doi.org/10.1093/ijnp/pyw020.Google Scholar
Nolvi, S., Uusitupa, H. M., Bridgett, D. J., Pesonen, H., Aatsinki, A. K., Kataja, E. L., Karlsson, H. & Karlsson, L. (2018) Human milk cortisol concentration predicts experimentally induced infant fear reactivity: Moderation by infant sex. Developmental Science 21(4):e12625. Available at: https://doi.org/10.1111/desc.12625.Google Scholar
Pannaraj, P. S., Li, F., Cerini, C., Bender, J. M., Yang, S., Rollie, A., Adisetivo, H., Zabih, S., Lincez, P. J., Bittinger, K., Bailey, A, Bushman, F. D., Sleasman, J. W. & Aldrovandi, G. M. (2017) Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatrics 171(7):647–54. Available at: https://doi.org/10.1001/jamapediatrics.2017.0378.Google Scholar
Planer, J. D., Peng, Y., Kau, A. L., Blanton, L. V., Ndao, I. M., Tarr, P. I., Warner, B. B. & Gordon, J. I. (2016) Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534(7606):263–66. Available at: https://doi.org/10.1038/nature17940.Google Scholar
Xia, Y. & Sun, J. (2017) Hypothesis testing and statistical analysis of microbiome. Genes and Diseases 4(3):138–48. Available at: https://doi.org/10.1016/j.gendis.2017.06.001.Google Scholar
Target article
Microbiota-gut-brain research: A critical analysis
Related commentaries (19)
A call for mapping the development of the microbiota-gut-brain axis during human infancy
Beyond a gut feeling: How the immune system impacts the effect of gut microbiota in neurodevelopment
Combining integrated systems-biology approaches with intervention-based experimental design provides a higher-resolution path forward for microbiome research
Increasing reproducibility and interpretability of microbiota-gut-brain studies on human neurocognition and intermediary microbial metabolites
Inter-individual variation shapes the human microbiome
Microbiota-gut-brain research: A plea for an interdisciplinary approach and standardization
Neuropeptide-like signaling in the microbiota-gut-brain axis
Neurotropic enteroviruses co-opt “fair-weather-friend” commensal gut microbiota to drive host infection and central nervous system disturbances
Nourishing the gut microbiota: The potential of prebiotics in microbiota-gut-brain axis research
On the potential distortions of highly cited papers in emerging research fields: A critical appraisal
Practical guidelines for gut microbiome analysis in microbiota-gut-brain axis research
Putting microbiota-gut-brain research in a systemic developmental context: Focus on breast milk
Scientific claims are constitutive of common sense about health
Stress and microbiota: Between biology and psychology
The contribution of microbiology to neuroscience: More complex than it seems?
The parent-offspring microbiome and neurobehavioral development
Why a developmental cognitive neuroscience approach may be key for future-proofing microbiota-gut-brain research
Why don't probiotics work?
Why microbes, not microbiomes, are better causal explanations in gut-brain research
Author response
Causal clarity and deeper dimensions in microbiota-gut-brain research