Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T10:45:39.005Z Has data issue: false hasContentIssue false

Lipid fluidity of triacylglycerol-rich lipoproteins isolated from copper-deficient rats *

Published online by Cambridge University Press:  09 March 2007

Claude Motta
Affiliation:
Centre de Recherche en Nutrition Humaine de Clermont-Ferrand, Laboratoire de Biochimie, Hôtel Dieu, 63000 Clermont-Ferrand, France
Elyett Gueux
Affiliation:
Laboratoire des Maladies Métaboliques INRA, Theix 63122 St-Genès-Champanelle, France
Andrzej Mazur
Affiliation:
Laboratoire des Maladies Métaboliques INRA, Theix 63122 St-Genès-Champanelle, France
Yves Rayssiguier
Affiliation:
Laboratoire des Maladies Métaboliques INRA, Theix 63122 St-Genès-Champanelle, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Triacylglycerol-rich lipoproteins (TGRLP) were isolated from Cu-deficient and control rats. TGRLP from Cu-deficient rats appeared more fluid than those from controls as sensed by the fluorescence anisotropy of 1,6-diphenyl-l-3,5-hexatriene (DPH). This high fluidity was related to alow cholesterol: phospholipid ratio and high triacylglycerol content in these lipoproteins. TGRLP from Cu-deficient rats were more susceptible to in vitro peroxidation than lipoproteins from control rats as shown by the rate of diene conjugation. The damage induced by the peroxidation resulted in a more ordered state of the lipid fraction especially in lipoproteins from Cu-deficient rats. Thus, after in vitro peroxidation, TGRLP from Cu-deficient rats were more rigid than those from controls. These results suggest that Cu deficiency induces modifications in physicochemical properties of TGRLP which could affect their metabolism.

Type
Copper deficiency and lipoprotein fluidity
Copyright
Copyright © The Nutrition Society 1996

References

REFERNCRS

Allen, K. G. D. & Klevay, L. N. (1994). Copper: an antioxidant nutrient for cardiovascular health. Current Opinion in Lipidology 5, 2228.CrossRefGoogle ScholarPubMed
Al-Othman, A. A., Rosenstein, F.Lei, K. Y. (1993). Copper deficiency increases in vivo hepatic synthesis of fatty acids, triacylglycerols and phospholipids in rats. Proceedings of the Society for Experimental Biology and Medicine 204, 97103.Google Scholar
Yashar, V. Ben & Barenholz, Y. (1991). Characterization of the core and surface of human plasma lipoproteins. A study based on the use of five fluorophores. Chemistry and Physics of Lipids 60, 114.CrossRefGoogle ScholarPubMed
Berlin, E. & Young, C. Jr (1983). Effects of fat level, feeding period and source of fat on lipid fluidity and physical state of rabbitplasma lipoproteins. Atherosclerosis 48, 1527.Google Scholar
Borchman, D., Lamba, O. P., Salmassi, S., Lou, M. & Yappert, C. (1992). The dual effect of oxidation on lipid bilayer structure. Lipids 27, 261265.CrossRefGoogle ScholarPubMed
Cunnane, S. C. (1990). Copper and long chain fatty acid metabolism. In Role of Copper in Lipid Metabolism, pp. 161178 [Lei, K. Y., editor] Boca Raton, FL: CRC Press Inc.Google Scholar
Deckelbaum, R. J., Shipley, G. G. & Small, D. M. (1977). Structure and interactions of lipids in human plasma low density lipoproteins. Journal of Biological Chemistry 252, 744754.Google Scholar
Esterbauer, H., Puhl, H., Dieber-Rotheneder, M., Waeg, G. & Rabl, H. (1991). Effect of antioxidants on oxidative modification of LDL. Annals of Medicine 23, 573581.Google Scholar
Esterbauer, H., Striegl, G., Puhl, H. & Rotheneder, M. (1989). Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radical Research Communications 6, 6775.CrossRefGoogle ScholarPubMed
Gruneberger, D., Haimovitz, R. & Shinitzky, M. (1982). Resolution of plasma membrane lipid fluidity in intake cells labelled with diphenyl hexatriene. Biochimica et Biophysica Acta 688, 764774.CrossRefGoogle Scholar
Havel, R. J., Eder, A. H. & Bragdon, J. M. (1955). The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. Journal of Clinical Investigation 34, 13451363.CrossRefGoogle ScholarPubMed
Lei, K. Y. (editor) (1990). Role of Copper in Lipid Metabolism. Boca Raton, FL: CRC Press Inc.Google Scholar
Lentz, B. R., Moore, B. M. & Barrow, D. A. (1979). Light scattering effects in the measurement of membrane microviscosity with diphenyl hexatriene. Biophysical Journal 25, 489494.CrossRefGoogle Scholar
McLean, L. R. & Hagamen, K. A. (1992). Effect of lipid physical state on the rate of peroxidation of liposomes. Free Radical Biology and Medicine 12, 113119.CrossRefGoogle ScholarPubMed
Markwell, M. A. K., Has, S. M., Bieber, L. L. & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 87, 206210.CrossRefGoogle ScholarPubMed
Nassir, F., Mazur, A., Sérougne, C., Gueux, E. & Rayssiguier, Y. (1993). Hepatic apolipoprotein B synthesis in copper-deficient rats. FEBS Letters 322, 3336.Google Scholar
Parthasarathy, S. & Steinberg, D. (1992). Cell-induced oxidation of LDL. Current Opinion in Lipidology 3,313317.CrossRefGoogle Scholar
Prohaska, J. R. (1990). Biochemical changes in copper deficiency. Journal of Nutritional Biochemistry 1,453461.CrossRefGoogle ScholarPubMed
Rayssiguier, Y., Gueux, E., Bussière, L. & Mazur, A. (1993). Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. Journal of Nutrition 123, 13431348.Google ScholarPubMed
Richter, C. (1987). Biophysical consequences of lipid peroxidation in membranes. Chemistry and Physics of Lipids 44, 175189.Google Scholar
Shinitzky, M. (1982). Membrane fluidity and cellular functions. In Physiology of Membrane Fluidity, vol. 1, pp. 152 [Shinitzky, M., editor]. Boca Raton, FL: CRC Press.Google Scholar
Smith, L. L. (1991). Another cholesterol hypothesis: cholesterol as antioxidant. Free Radical Biology and Medicine 11, 4761.CrossRefGoogle ScholarPubMed
Sola, R., Baudet, M. F., Motta, C., Maillé, M., Boisnier, C. & Jacotot, B. (1990). Effects of dietary fats on the fluidity of human high-density lipoprotein: influence of the overall composition and phospholipids fatty acids. Biochimica et Biophysica Acta 1043, 4351.CrossRefGoogle Scholar
Souter, A. (1978). Does dietary fat influence plasma lipoprotein structure? Nature 273, 1112.Google Scholar