Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:24:29.279Z Has data issue: false hasContentIssue false

Prevention of coprophagy modifies magnesium absorption in rats fed with fructo-oligosaccharides

Published online by Cambridge University Press:  09 March 2007

Atsutane Ohta
Affiliation:
Department of Nutritional Science Centre, Bioscience Laboratories, Meiji Seika Kaisha Ltd, Saitama 350-02, Japan
Seigo Baba
Affiliation:
Department of Nutritional Science Centre, Bioscience Laboratories, Meiji Seika Kaisha Ltd, Saitama 350-02, Japan
Masako Ohtsuki
Affiliation:
Department of Nutritional Science Centre, Bioscience Laboratories, Meiji Seika Kaisha Ltd, Saitama 350-02, Japan
Adusa Taguchi
Affiliation:
Department of Nutritional Science Centre, Bioscience Laboratories, Meiji Seika Kaisha Ltd, Saitama 350-02, Japan
Takashi Adachi
Affiliation:
Department of Nutritional Science Centre, Bioscience Laboratories, Meiji Seika Kaisha Ltd, Saitama 350-02, Japan
Hiroshi Hara
Affiliation:
Department of Bioscience and Chemistry, Faculty of Agriculture, Hokkaido University, Sapporo 060, Japan
Rights & Permissions [Opens in a new window]

Abstracts

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We developed a new type of anal cup for prevention of coprophagy and determined whether the absorption of Ca and Mg and the stimulatory effects of feeding fructo-oligosaccharides (FO) on theabsorption of Ca and Mg were altered by prevention of coprophagy in rats. Rats were fed on a FO-free diet or a diet containing 50 g FO/kg for 2 weeks with or without prevention of coprophagy. FO-feeding increased the apparent absorptive ratio of Ca and Mg in rats with or without prevention of coprophagy. However, in the FO-fed groups the absorptive ratio of Mg in rats with prevention of coprophagy was higher than in rats withont prevention of coprophagy. The Ca content of the femur was higher in rats fed on the FO-diet than in rats fed on the FO-free diet both with and without coprophagy. In conclusion, FO-feeding increased the absorption of Ca and Mg in rats both with and without coprophagy. Moreover, prevention of coprophagy enhanced the absorption of Mg in rats fed with FO. Coprophagy has to be considered when the effects of luminal fermentation or mineral absorption are examined in rats

Type
Coprophagy and mineral absorption in rats
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

American Institute of Nutrition (1977). Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies. Journal of Nutrition 107, 13401348.CrossRefGoogle Scholar
Brink, E. J., Beynen, A. C., Dekker, P. R., Beresteijn, E. C. H. & Meer, R. (1992). Interaction of calcium and phosphate decreases ileal magnesium solubility and apparent magnesium absorption. Journal of Nutrition 122, 580586.CrossRefGoogle ScholarPubMed
Cree, T. C., Wadley, D. M. & Marlett, J. A. (1986). Effect of preventing coprophagy in the raton neutral detergent fiber digestibility and apparent calcium absorption. Journal of Nutrition 116, 12041208.CrossRefGoogle Scholar
Demigné, C., Levrat, M. A. & Rémésy, C. (1989). Effects of feeding fermentable carbohydrates on the caecal concentration of minerals and their fluxes between the caecum and blood plasma in the rat. Journal of Nutrition 119. 16251630.CrossRefGoogle ScholarPubMed
Ebino, K. Y. (1993). Studies on coprophagy in experimental animals. Experimental Animals 42, 19.CrossRefGoogle ScholarPubMed
Giovannetti, P. M. (1982). Effect of coprophagy on nutrition. Nutrition Research 2, 335349.CrossRefGoogle Scholar
Gustafsson, B. E. & Fitzgerald, R. J. (1960). Alteration in intestinal microbial flora of rats with tail cups to prevent coprophagy. Proceedings of the Society for Experimental Biology and Medicine 104, 319322.CrossRefGoogle ScholarPubMed
Heijinen, A. M. P., Brink, E. J., Lemmens, A. G. & Beynen, A. C. (1993). Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose. British Journal of Nutrition 70 747756.CrossRefGoogle Scholar
Hidaka, H., Hirayama, M. & Sumi, N. (1988). A fructooligosaccharides-producing enzyme from Aspergillus niger ATCC 20611. Agricultural and Biological Chemistry 52, 11811187.Google Scholar
Hidaka, H., Tashiro, T. & Eida, T. (1991). Proliferation of bifidobacteria by oligosaccharides and their useful effect on human health. Bifidobacteria Microfiora 10, 6579.CrossRefGoogle Scholar
Jackson, K. A. & Topping, D. L. (1993). Prevention of coprophagy does not alter the hypocholesterolaemic effects of oat bran in the rat. British Journal of Nutrition 70, 211219.CrossRefGoogle Scholar
Levrat, M., Rémésy, C. & Demigné, C. (1991). High propionic acid fermentation and mineral accumulation in the cecum of rats adapted to different levels of inulin. Journal of Nutrition 121, 17301737.Google ScholarPubMed
Ohta, A., Baba, S., Takizawa, T. & Adachi, T. (1994 a). Effects of fructooligosaccharides onthe absorption of magnesium in the magnesium-deficient rat model. Journal of Nutritional Science and Vitaminology 40, 171180.CrossRefGoogle Scholar
Ohta, A., Ohtsuki, M., Toshio, T., Harem, I. & Apache, T. (1994 b). Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomized rats. International Journal for Vitamin and Nutrition Research 64, 316323.Google ScholarPubMed
Ohta, A., Osakabe, N., Yamada, K., Saito, Y. & Hidaka, H. (1993). Effect of fructooligosaccharides on Ca, Mg and P absorption in rats. Journal of Japanese Society of Nutrition and Food Science 46, 123129.CrossRefGoogle Scholar
Oku, T., Tokunaga, T. & Hosoya, N. (1984). Nondigestibility of a new sweetener, ‘Neosugar’ in the rat. Journal of Nutrition 114, 15741581.CrossRefGoogle ScholarPubMed
Neale, R. (1982). Coprophagy in iron-deficient rats. Laboratory Animals 16, 204207.CrossRefGoogle ScholarPubMed
Rémésy, C., Levrat, M. A., Garnet, I. & Demigné, C. (1993). Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. American Journal of Physiology 264, G855G862.Google ScholarPubMed
Shulz, A. G., Amelsvoort, J. M. M. & Beynen, A. C. (1993). Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium absorption in rats. Journal of Nutrition 123, 17241731.CrossRefGoogle Scholar
Schulze, J. & Haenel, H. (1969). Beziehungen zwischen Koprophagie, Darmflora und Vitaminen (Relationship between coprophagy, intestinal flora and vitamins). Zeitschrift fiir Versuchstierkunde 11, 190206.Google ScholarPubMed
Tadayyon, B. & Lutwak, L. (1968). Role of coprophagy in utilization of triglycerides, calcium, magnesium and phosphorus in the rat. Journal of Nutrition 97, 243245.CrossRefGoogle Scholar
Wang, C. & Peters, D. (1963). Modification of anal cup technique for small experimental animals. Laboratory Animal Care 13, 105108.Google ScholarPubMed
Whitehead, J. S., Kim, Y. S. & Prizont, R. (1976). A simple quantitative method to determine short chain fatty acid levels in biological fluids. Clinica Chimica Actu 72, 315318.CrossRefGoogle ScholarPubMed
Zhang, D., Hendricks, D. G. & Mahoney, A. W. (1992). Effect of coprophagy on bioavailability of iron from plant foods to anemic rats. Plant Foodr for Human Nutrition 42, 97108.CrossRefGoogle ScholarPubMed