Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T09:10:37.494Z Has data issue: false hasContentIssue false

Estimating development and temperature thresholds of Ephestia kuehniella: toward improving a mass production system

Published online by Cambridge University Press:  03 October 2018

H. Pakyari*
Affiliation:
Young Researchers and Elite Club, Takestan Branch, Islamic Azad University, Takestan, Iran
M. Amir-Maafi
Affiliation:
Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension, Organization (AREEO), Tehran, Iran
Z. Moghadamfar
Affiliation:
Young Researchers and Elite Club, Takestan Branch, Islamic Azad University, Takestan, Iran
M. Zalucki
Affiliation:
School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
*
*Author for correspondence Phone: +98 2835270134 Fax: +98 2835270165 E-mail: Pakyari@tiau.ac.ir

Abstract

The development of the Mediterranean flour moth, Ephestia kuehniella (Zeller), was evaluated at 10, 15, 17.5, 20, 22.5, 25, 27.5, 30 and 32.5°C with no lighting. None successfully completed development at 10 and 32.5°C. The total development time from egg to adult emergence was 164, 140, 98, 76, 61, 62 and 50 days, respectively, at the remaining temperatures. The developmental rate of E. kuehniella was described by the common linear model and six non-linear models. The lower temperature threshold for the immature stages and the thermal constant for E. kuehniella were 9°C and 1111 degree-days (DD) to complete development from egg to newly emerged adult. Non-linear models estimated the lower and upper thermal thresholds (Tmin and Tmax) and optimal temperature (Topt). The values of Tmax calculated by three nonlinear models ranged from 34°C to 46°C; Topt for each stage of development varied from 24 and 31°C, consistent with the temperature (30°C) at which the most rapid development occurred. Information on the threshold temperatures for development and thermal requirements can be utilized to predict E. kuehniella population dynamics and phenology and to evaluate optimal temperature conditions for mass rearing in stored products.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.J., Yang, C.Y. & Jung, C. (2012) Model of Grapholita molesta spring emergence in pear orchards based on statistical information criteria. Journal of Asia Pacific Entomology 15, 589593.Google Scholar
Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control AC 19, 716723.Google Scholar
Athanassiou, C.G., Kavallieratos, N.G.Palyvos, N.E. & Buchelos, C.Th. (2003) Three-dimensional distribution and sampling indices of insects and mites in horizontally-stored wheat. Applied Entomology and Zoology 38, 413426.Google Scholar
Athanassiou, C.G., Kavallieratos, N.G., Palyvos, N.E., Sciarretta, A. & Trematerra, P. (2005) Spatio-temporal distribution of insects and mites in horizontally-stored wheat. Journal of Economic Entomology 98, 10581069.Google Scholar
Brindley, T.A. (1930) The growth and development of Ephestia kuehniella Zeller (Lepidoptera) and Tribolium confusum Duval (Coleóptera) under controlled conditions of temperature and relative humidity. Annals of the Entomological Society of America 23(4), 741757.Google Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P. & Mackauer, M. (1974) Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11, 431438.Google Scholar
Coelho, A. & Parra, J.R.P. (2013) The effect of rearing in different temperature regimes on the reproduction of Anagasta kuehniella (Lepidoptera: Pyralidae). Environmental Entomology 42, 799804.Google Scholar
Corbet, S.A. (1973) Oviposition pheromone in larval mandibular glands of Ephestia kuehniella. Nature 243: 537538.Google Scholar
Cymborowski, B. & Giebułtowicz, J.M. (1976) Effect of photoperiod on development and fecundity in the flour moth Ephestia kuehniella. Journal of Insect Physiology 22(9), 12131217.Google Scholar
Davidson, J. (1942) On the speed of development of insect eggs at constant temperatures. Australian Journal of Experimental Biology and Medical Science 20, 233239.Google Scholar
Davidson, J. (1944) On the relationship between temperature and rate of development of insects at constant temperatures. Journal of Animal Ecology 13, 2638.Google Scholar
Daumal, J. & Boinel, H. (1994) Variability in fecundity and plasticity of oviposition behavior in Anagasta kuehniella (Lepidoptera: Pyralidae). Annals of the Entomological Society of America 87, 250256.Google Scholar
Golizadeh, A. & Zalucki, M.P. (2012) Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). Insect Science 19, 609620.Google Scholar
Hagstrum, D.W. & Milliken, G.A. (1988) Quantitative analysis of temperature, moisture, and diet factors affecting insect development. Annals of Entomological Society of America 81, 539546.Google Scholar
Hamasaki, K. & Matsui, M. (2006) Development and reproduction of an aphidophagous coccinellid, Propylea japonica (Thunberg) (Coleoptera: Coccinellidae), reared on an alternative diet, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs. Applied Entomology and Zoology 41, 233237.Google Scholar
Hardy, I.C.W. (1994) Sex ratio and mating structure in the parasitoid hymenoptera. Oikos 69, 320.Google Scholar
Hill, D.S. (2002) Pests of Stored Foodstuffs and Their Control. Dordrecht, Kluwer Academic Publishers.Google Scholar
Howe, R.W. (1965) A summary of estimates of optimal and minimal conditions for population increase of some stored-product insects. Journal of Stored Product Research 1, 177184.Google Scholar
Jacob, T.A. & Cox, P.D. (1977) Influence of temperature and humidity on the life-cycle of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Product Research 13, 107118.Google Scholar
Jamoussi, K., Sellami, S., Abdelkefi-Mesrati, L., Givaudan, A. & Jaoua, S. (2009) Heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata strain K122 and oral toxicity against the Lepidoptera Ephestia kuehniella and Spodoptera littoralis. Molecular Biotechology 43, 97103.Google Scholar
Kim, D.S. & Lee, J.H. (2010) A population model for the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), in a Korean orchard system. Ecological Modelling 221, 268280.Google Scholar
Kim, D.S. & Riedl, H. (2005) Effect of temperature on development and fecundity of the predaceous plant bug Deraeocoris brevis reared on Ephestia kuehniella eggs. Biocontrol 50, 881897.Google Scholar
Kontodimas, D.C., Eliopoulos, P.A., Stathas, G.J. & Economou, L.P. (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae), preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environmental Entomology 33, 111.Google Scholar
Kontodimas, D.C., Milonas, P.G., Stathas, G.J., Economou, L.P. & Kavallieratos, N.G. (2007) Life table parameters of the pseudococcid predators Nephus includens and Nephus bisignatus (Coleoptera: Coccinelidae). European Journal of Entomology 104, 407415.Google Scholar
Lactin, D.J., Holliday, N.J., Johnson, D.L. & Craigen, R. (1995) Improved rate model of temperature-dependent development by arthropods. Environmental Entomology 24, 6875.Google Scholar
Liu, J.F., Liu, M., Yang, M.F., Kontodimas, D.C., Yu, X.F. & Lian, Q.X. (2014) Temperature-dependent development of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae) on Platycarya strobilacea. Journal of Asia Pacific Entomology 17, 803810.Google Scholar
Marec, F. (1991) Genetic control of pest Lepidoptera: construction of a balanced lethal strain in Ephestia kuehniella. Entomologia Experimentalis et Applicata 61, 271283.Google Scholar
MINITAB Inc. (2000) MINITAB User's Guide, version 13.20. Coventry, UK, Minitab Ltd.Google Scholar
Moghadamfar, Z., Amir-Maafi, M. & Pakyari, H. (2018) Effect of photoperiod on biology of Ephestia kuehniella (Lepidoptera: Pyralidae) under laboratory condition. Journal of Entomological Society of Iran, http://jesi.areeo.ac.ir/article_117117.html.Google Scholar
Notter-Hausmann, C. & Dorn, S. (2010) Relationship between behavior and physiology in an invasive pest species: oviposition site selection and temperature-dependent development of the oriental fruit moth (Lepidoptera: Tortricidae). Environmental Entomology 39, 561569.Google Scholar
Pakyari, H., Fathipour, Y. & Enkegaard, A. (2011a) Estimating development and temperature thresholds of Scolothrips longicornis (Thysanoptera: Thripidae) on eggs of two-spotted spider mite using linear and non-linear models. Journal of Pest Science 84, 153163.Google Scholar
Pakyari, H., Fathipour, Y. & Enkegaard, A. (2011b) Effect of temperature on the life-table parameters of the predatory thrips, Scolothrips longicornis fed on two-spotted spider mites. Journal of Economic Entomology 104(3), 799805.Google Scholar
Pakyari, H., Amir-Maafi, M. & Moghadamfar, Z. (2016) Oviposition model of Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Economic Entomology 109(5), 20692073.Google Scholar
Paust, A., Reichmuth, C., Buttner, C., Prozell, S., Adler, C. & Scholler, M. (2008) Spatial effects on competition between the larval parasitoids Habrobracon hebetor (Say) (Hymenoptera: Braconidae) and Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) parasitising the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 16, 291294.Google Scholar
Price, P.W. (1997) Insect Ecology. New York, John Wiley and Sons, 874 pp.Google Scholar
Rahman, M.M., Roberts, H.L.S. & Schmidt, O. (2007) Factors affecting growth in the koinobiont endoparasitoid Venturia canescens in the flour moth Ephestia kuehniella. Journal of Insect Physiology 53, 463467.Google Scholar
Rees, D. (2003) Insects of Stored Products. London, CSIRO Publishing.Google Scholar
Rochat, J. & Gutierrez, A.P. (2001) Weather-mediated regulation of olive scale by two parasitoids. Journal of Animal Ecology 70, 476490.Google Scholar
Roy, M., Brodeur, J. & Cloutier, C. (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environmental Entomology 31, 177187.Google Scholar
Rwomushana, I., Ekesi, S., Ogol, C.K.P.O. & Gordon, I. (2008) Effect of temperature on development and survival of immature stages of Bactrocera invadens (Diptera: Tephritidae). Journal of Applied Entomology 132, 832839.Google Scholar
Sapir, Y., Mazer, S.J. & Holzapfel, C. (2008) Sex ratio. pp. 32433248 in Erik, J.S. and Brian, F. (Eds) Encyclopedia of Ecology. Oxford, Academic Press.Google Scholar
Sedlacek, J.D., Weston, P.A. & Barney, R.J. (1996) Lepidoptera and Psocoptera. pp. 4170 In Subramanyam, B. and Hagstrum, D.W. (Eds) Integrated Management of Insects in Stored Products. New York, Marcel Dekker.Google Scholar
Siddiqui, W.H. & Barlow, C.A. (1973) Population growth of Anagasta kuehniella (Lepidoptera: Pyralidae) at constant and alternating temperatures. Annals of Entomological Society of America 66, 579585.Google Scholar
SPSS (2004) SPSS Base 13.0 User's Guide. Chicago, IL, SPSS.Google Scholar
Stinner, R.E., Gutierrez, A.P. & Butler, G.D. (1974) An algorithm for temperature-dependent growth rate simulation. Canadian Entomology 106, 519524.Google Scholar
Subramanyam, B.H. & Hagstrum, D.W. (1993) Predicting development times of six stored-product moth species (Lepidoptera: Pyralidae) in relation to temperature, relative humidity, and diet. European Journal of Entomology 90, 5164.Google Scholar
Vucetich, J.A., Peterson, R.O. & Schaefer, C.L. (2002) The effect of prey and predator densities on wolf predation. Ecology 83, 30033013.Google Scholar
Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M. & Coulson, R.N. (1984) Modeling insect development rates: a literature review and application of a biophysical model. Annals of Entomological Society of America 77, 208225.Google Scholar
Walgama, R.S. & Zalucki, M.P. (2006) Evaluation of different models to describe egg and pupal development of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka. Insect Science 13, 109118.Google Scholar
Wrensch, D.L. & Ebbert, M.A. (eds) (1993) Evolution and Diversity of Sex Ratio in Insects and Mites. New York, Chapman and Hall, 630 pp.Google Scholar
Zahiri, B., Fathipour, Y., Khanjani, M., Moharramipourand, S. & Zalucki, M.P. (2010) Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): picking the best model. Environmental Entomology 39, 177189.Google Scholar