Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T16:22:49.189Z Has data issue: false hasContentIssue false

Potential role of the heat shock protein 90 (hsp90) in buffering mutations to favour cyclical parthenogenesis in the peach potato aphid Myzus persicae (Aphididae, Hemiptera)

Published online by Cambridge University Press:  12 September 2018

M. Mandrioli*
Affiliation:
Department of Life Sciences, University of Modena and Reggio Emilia, Biology Building, via Campi 213/D, Modena, 41125, Italy
E. Zanetti
Affiliation:
Department of Life Sciences, University of Modena and Reggio Emilia, Biology Building, via Campi 213/D, Modena, 41125, Italy
A. Nardelli
Affiliation:
Department of Life Sciences, University of Modena and Reggio Emilia, Biology Building, via Campi 213/D, Modena, 41125, Italy
G.C. Manicardi
Affiliation:
Padiglione Besta, via Amendola 2, Reggio Emilia, 42100, Italy
*
*Author for correspondence Phone: (+39) 059-2055544 Fax: (+39) 059-2055548 E-mail: mauro.mandrioli@unimore.it

Abstract

Heat-shock proteins 90 (hsp90s) are a class of molecules able to stabilize a network of ‘client’ proteins that are involved in several processes. Furthermore, recent studies indicated that mutations in the hsp90-encoding gene induce a wide range of phenotypic abnormalities, which have been interpreted as an increased sensitivity of different developmental pathways to hidden/cryptic mutations. In order to verify the role of hsp90 in aphids, we amplified and sequenced the hsp90 gene in 17 lineages of the peach potato aphid Myzus persicae (Sulzer, 1776) looking for the presence of mutations. In particular, we compared lineages with different reproductive modes (obligate vs. cyclical parthenogenesis), propensity to develop winged females and karyotype stability. Differently from the cyclical parthenogenetic lineages that possessed functional hsp90 genes, the seven analysed asexual lineages showed severe mutations (including frameshift and non-sense mutations). In vivo functional assays with the hsp90-inhibitor geldanamycin showed that some lineages with cyclical parthenogenesis may lose their ability to induce sexuales in the absence of active hsp90 revealing the presence of cryptic mutations in their genomes. As a whole, our data suggest that hsp90 could play in aphids a role in buffering hidden/cryptic mutations that disrupt cyclical parthenogenesis.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ament-Velásquez, S.L., Figuet, E., Ballenghien, M., Zattara, E.E., Norenburg, J.L., Fernández-Álvarez, F.A., Bierne, J., Bierne, N. & Galtier, N. (2016) Population genomics of sexual and asexual lineages in fissiparous ribbon worms (Lineus, Nemertea): hybridization, polyploidy and the Meselson effect. Molecular Ecology 25, 33563369.Google Scholar
Bagatell, R. & Whitesell, L. (2004) Altered hsp90 function in cancer: a unique therapeutic opportunity. Molecular Cancer Therapeutics 3, 10211030.Google Scholar
Bandura, J.L., Jiang, H., Nickerson, D.W. & Edgar, B.A. (2013) The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster. PLoS Genetics 9, e1003835.10.1371/journal.pgen.1003835Google Scholar
Barbuti, R., Mautner, S., Carnevale, G., Milazzo, P., Rama, A. & Sturmbauer, C. (2012) Population dynamics with a mixed type of sexual and asexual reproduction in a fluctuating environment. BMC Evolutionary Biology 12, 49.Google Scholar
Bardwell, J.C. & Craig, E.A. (1988) Ancient heat shock gene is dispensable. Journal of Bacteriology 170, 29772983.Google Scholar
Braendle, C., Davis, G.K., Brisson, J.A. & Stern, D.L. (2006) Wing dimorphism in aphids. Heredity 97, 192199.Google Scholar
Bridge, G., Rashid, S. & Martin, S.A. (2014) DNA mismatch repair and oxidative DNA damage: implications for cancer biology and treatment. Cancers 6, 15971614.10.3390/cancers6031597Google Scholar
Chistiakov, D.A., Voronova, N.V. & Chistiakov, P.A. (2008) Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncologica 47, 809824.Google Scholar
Crema, R. (1979) Egg viability and sex determination in Megoura viciae (Homoptera, Aphididae). Entomologia Experimentalis et Applicata 26, 152156.Google Scholar
Crevel, G., Bates, H., Huikeshoven, H. & Cotterill, S. (2001) The Drosophila dpit47 protein is a nuclear Hsp90 co-chaperone that interacts with DNA polymerase alpha. Journal of Cell Science 114, 20152025.Google Scholar
Delmotte, F., Leterme, N., Gauthier, J.P., Rispe, C. & Simon, J.C. (2002) Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Molecular Ecology 11, 711723.Google Scholar
Estruch, F. (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiology Review 24, 469486.10.1111/j.1574-6976.2000.tb00551.xGoogle Scholar
Figueroa, C.C., Prunier-Leterme, N., Rispe, C., Sepulveda, F., Fuentes-Contreras, E., Sabater-Munoz, B., Simon, J.C. & Tagu, D. (2007) Annotated expressed sequence tags and xenobiotic detoxification in the aphid Myzus persicae (Sulzer). Insect Science 14, 2945.Google Scholar
Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D. & Brown, P.O. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell 11, 42414257.Google Scholar
Harshman, L.G. & Futuyama, D. (1985) The origin and distribution of clonal diversity in Alsophila pometaria (Lepidoptera: Geometridae). Evolution 39, 315324.Google Scholar
Hoeijmakers, J.H. (2001) Genome maintenance mechanisms for preventing cancer. Nature 411, 366374.10.1038/35077232Google Scholar
Innes, D.J., Schwartz, S. & Hebert, P.D.N. (1986) Genotypic diversity and variation in mode of reproduction among populations in the Daphnia pulex group. Heredity 57, 345355.Google Scholar
Jarosz, D.F. & Lindquist, S. (2010) Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330, 18201824.10.1126/science.1195487Google Scholar
Kati, A.N., Mandrioli, M., Skouras, P.J., Malloch, G.L., Voudouris, C.Ch., Venturelli, M., Manicardi, G.C., Tsitsipis, J.A., Fenton, B. & Margaritopoulos, J.T. (2014) Recent changes in the distribution of carboxylesterase genes and associated chromosomal rearrangements in Greek populations of the tobacco aphid Myzus persicae nicotianae. Biological Journal of the Linnean Society 113, 455470.Google Scholar
Li, Z. & Srivastava, P. (2004) Heat-shock proteins. Current Protocol in Immunology 58, A.1T.1A.1T.6.Google Scholar
Li, Z.Q., Zhang, S., Luo, J.Y., Wang, C.Y. & Lv, L.M. (2013) Ecological adaption analysis of the cotton aphid (Aphis gossypii) in different phenotypes by transcriptome comparison. PLoS ONE 8, e83180.Google Scholar
Mandrioli, M., Manicardi, G.C., Bizzaro, D. & Bianchi, U. (1999) NOR heteromorphism within a parthenogenetic lineage of the aphid Megoura viciae. Chromosome Research 7, 167172.Google Scholar
Mandrioli, M., Manicardi, GC. & Marec, F. (2003) Cytogenetic and molecular characterization of the MBSAT1 satellite DNA in holokinetic chromosomes of the cabbage moth, Mamestra brassicae (Lepidoptera). Chromosome Research 11, 5156.Google Scholar
Manicardi, G.C., Nardelli, A. & Mandrioli, M. (2015) Fast chromosomal evolution and karyotype instability: recurrent chromosomal rearrangements in the peach potato aphid Myzus persicae (Hemiptera: Aphididae). Biological Journal of the Linnean Society 116, 519529.Google Scholar
Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C. & Bryant, S.H. (2015) CDD: NCBI's conserved domain database. Nucleic Acids Research 43, 222226.Google Scholar
Miklejohn, C.D. & Hartl, D.L. (2002) A single mode of canalization. Trends in Ecology and Evolution 17, 468473.Google Scholar
Monti, V., Lombardo, G., Loxdale, H., Manicardi, G.C. & Mandrioli, M. (2012) Continuous occurrence of intra-individual chromosome rearrangements in the peach potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Genetica 140, 93103.Google Scholar
Moran, N.A. (1992) The evolution of aphid life cycles. Annual Review of Entomology 37, 321348.Google Scholar
Morimoto, R.I., Kline, M.P., Bimston, D.N. & Cotto, J.J. (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays in Biochemistry 32, 1729.Google Scholar
Müller, C.B, Williams, I.S & Hardie, J. (2001) The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecological Entomology 26, 330340.10.1046/j.1365-2311.2001.00321.xGoogle Scholar
Muller, P., Ceskova, P. & Vojtesek, B. (2005) Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53: implications for cancer therapy. Journal of Biological Chemistry 280, 66826691.Google Scholar
Nguyen, T.T.A., Michaud, D. & Cloutier, C. (2009) A proteomic analysis of the aphid Macrosiphum euphorbiae under heat and radiation stress. Insect Biochemistry and Molecular Biology 39, 2030.Google Scholar
Pennisi, R., Ascenzi, P. & di Masi, A. (2015) Hsp90: a new player in DNA repair? Biomolecules 5, 25892618.Google Scholar
Picard, D. (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cellular and Molecular Life Science 59, 16401648.Google Scholar
Queitsch, C., Sangster, T.A. & Lindquist, S. (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417, 618624.Google Scholar
Ramsey, J.S., Wilson, A.C.C., de Vos, M., Sun, Q., Tamborindeguy, C., Winfield, A., Malloch, G., Smith, D.M., Fenton, B., Gray, S.M. & Jander, G. (2007) Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics 8, 423.Google Scholar
Richter, K., Haslbeck, M. & Buchner, J. (2010) The heat shock response: life on the verge of death. Molecular Cell 40, 253266.Google Scholar
Rispe, C. & Pierre, J.S. (1998) Coexistence between cyclical parthenogens, obligate parthenogens, and intermediates in a fluctuating environment. Journal of Theoretical Biology 195, 97110.Google Scholar
Rispe, C., Pierre, J.S., Simon, J.C. & Gouyon, P.H. (1998) Models of sexual and asexual coexistence in aphids based on constraints. Journal of Evolutionary Biology 11, 685701.Google Scholar
Rutherford, S.L. & Lindquist, S. (1998) Hsp90 as a capacitor for morphological evolution. Nature 396, 336342.Google Scholar
Sangster, T.A., Lindquist, S. & Queitsch, C. (2004) Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26, 348362.Google Scholar
Simon, J.C., Carrel, E., Hebert, P.D.N., Dedryver, C.A., Bonhomme, J. & Gallic, J.F. (1996) Genetic diversity and mode of reproduction in French populations of the aphid Rhopalosiphum padi L. Heredity 76, 305313.Google Scholar
Simon, J.C., Rispe, C. & Sunnucks, P. (2002) Ecology and evolution of sex in aphids. Trends in Ecology and Evolution 17, 3439.Google Scholar
Specchia, V., Piacentini, L., Tritto, P., Fanti, L., D'Alessandro, R., Palumbo, G., Pimpinelli, S. & Bozzetti, M.P. (2010) Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463, 662665.Google Scholar
Stöck, M., Lampert, K.P., Möller, D., Schlupp, I. & Schartl, M. (2010) Monophyletic origin of multiple clonal lineages in an asexual fish (Poecilia formosa). Molecular Ecology 19, 52045215.Google Scholar
Taipale, M. & Jarosz, D.F. (2010) Lindquist S.HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Review Molecular Cell Biology 11, 515528.Google Scholar
Torres-Quintero, M.C., Arenas-Sosa, I., Peña-Chora, G. & Hernández-Velázquez, V.M. (2013) Feeding chamber for Myzus persicae culture (Hemiptera: Aphididae). Florida Entomologist 96, 16001602.Google Scholar
van der Straten, A., Rommel, C., Dickson, B. & Hafen, E. (1997) The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO Journal 16, 19611969.Google Scholar
Wagner, A. (2005) Robustness and Evolvability in Living Systems. Princeton: Princeton University Press.Google Scholar
Wandinger, S.K., Richter, K. & Buchner, J. (2008) The Hsp90 chaperone machinery. Journal of Biological Chemistry 283, 1847318477.Google Scholar
Xiao, H. & Lis, J.T. (1989) Heat shock and developmental regulation of the Drosophila melanogaster hsp83 gene. Molecular and Cellular Biology 9, 17461753.Google Scholar
Young, J.C., Moarefi, I. & Hartl, F.U. (2001) Hsp90: a specialized but essential protein-folding tool. Journal of Cell Biology 154, 267274.Google Scholar
Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A. & Houry, W.A. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715727.Google Scholar