Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T10:20:36.594Z Has data issue: false hasContentIssue false

Ascending HNN-extensions and properly 3-realisable groups

Published online by Cambridge University Press:  17 April 2009

Francisco F. Lasheras
Affiliation:
Departamento de Geometría y Topología, Universidad de Sevilla, Apdo 1160, 41080-Sevilla, Spain e-mail: lasheras@us.es
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we show that any ascending HNN-extension of a finitely presented group is properly 3-realisable. We recall that a finitely presented group G is said to be properly 3-realisable if there exists a compact 2-polyhedron K with π1(K) ≅ G and whose universal cover has the proper homotopy type of a (PL) 3-manifold (with boundary).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Ayala, R., Cárdenas, M., Lasheras, F.F. and Quintero, A., ‘Properly 3-realizable groups’, Proc. Amer. Math. Soc. 133 (2005), 15271535.CrossRefGoogle Scholar
[2]Baues, H-J. and Quintero, A., Infinite homotopy theory, K-monographs in Mathematics 6 (Kluwer Academic Publishers, Dordrecht, 2001).CrossRefGoogle Scholar
[3]Brown, R. and Geoghegan, R., ‘An infinite-dimensional torsion-free F P group’, Invent. Math. 77 (1984), 367381.CrossRefGoogle Scholar
[4]Cannon, J.W., Floyd, W.J. and Parry, W.R., ‘Introductory notes on Richard Thompson's groups’, Enseig. Math. 42 (1996), 215256.Google Scholar
[5]Cárdenas, M., Lasheras, F.F., Muro, F. and Quintero, A., ‘Proper L-S category, fundamental pro-groups and 2-dimensional proper co-H-spaces’, Topology Appl. (to appear).Google Scholar
[6]Cárdenas, M., Lasheras, F.F. and Roy, R., ‘Direct products and properly 3-realisable groups’, Bull. Austral. Math. Soc. 70 (2004), 199206.CrossRefGoogle Scholar
[7]Dunwoody, M.J., ‘The accessibility of finitely presented groups’, Invent. Math. 81 (1985), 449457.CrossRefGoogle Scholar
[8]Federer, H. and Jonsson, B., ‘Some properties of free groups’, Trans. Amer. Math. Soc. 68 (1950), 127.CrossRefGoogle Scholar
[9]Geoghegan, R., Topological methods in group theory, (book in preparation).Google Scholar
[10]Geoghegan, R. and Mihalik, M., ‘Free abelian cohomology of groups and ends of universal covers’, J. Pure Appl. Algebra 36 (1985), 123137.Google Scholar
[11]Geoghegan, R. and Mihalik, M., ‘The fundamental group at infinity’, Topology 35 (1996), 655669.CrossRefGoogle Scholar
[12]Lyndon, R.C. and Schupp, P.E., Combinatorial group theory (Berlin, Heidelberg, New York, 1977).Google Scholar
[13]Mardešic, S. and Segal, J., Shape theory (North-Holland, Amsterdam, New York, 1982).Google Scholar
[14]Mihalik, M., ‘Ends of groups with the integers as quotient’, J. Pure Appl. Algebra 35 (1985), 305320.CrossRefGoogle Scholar
[15]Scott, P. and Wall, C.T.C., ‘Topological methods in group theory’, in Homological group theory, London Math. Soc. Lecture 36 Notes (Cambridge Univ. Press, Cambridge, 1979), pp. 137204.CrossRefGoogle Scholar