Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T00:31:28.161Z Has data issue: false hasContentIssue false

EULER NUMBERS MODULO 2n

Published online by Cambridge University Press:  09 April 2010

ZHI-HONG SUN*
Affiliation:
School of Mathematical Science, Huaiyin Normal University, Huaian, Jiangsu 223001, PR China (email: szh6174@yahoo.com)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let {En} be the Euler numbers. We give a general congruence modulo 2(m+2)n for E2mk+b, where k,m,n are positive integers and b∈{0,2,4,…}.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Stern, M. A., ‘Zur Theorie der Eulerschen Zahlen’, J. Reine Angew. Math. 79 (1875), 6798.Google Scholar
[2]Sun, Z. H., ‘Congruences for Bernoulli numbers and Bernoulli polynomials’, Discrete Math. 163 (1997), 153163.CrossRefGoogle Scholar
[3]Sun, Z. H., ‘Congruences concerning Bernoulli numbers and Bernoulli polynomials’, Discrete Appl. Math. 105 (2000), 193223.CrossRefGoogle Scholar
[4]Sun, Z. W., ‘On Euler numbers modulo powers of two’, J. Number Theory 115 (2005), 371380.CrossRefGoogle Scholar
[5]Sun, Z. H., ‘Congruences involving Bernoulli polynomials’, Discrete Math. 308 (2008), 71112.CrossRefGoogle Scholar
[6]Wagstaff, S. S. Jr, ‘Prime divisors of the Bernoulli and Euler numbers’, in: Number Theory for the Millennium, Vol. III (Urbana, IL, 2000), (eds. Bennett, M. A.et al.) (AK Peters, Natick, MA, 2002), pp. 357374.Google Scholar