Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T09:34:03.091Z Has data issue: false hasContentIssue false

Finitely generated ideals in the disk algebra

Published online by Cambridge University Press:  17 April 2009

Raymond Mortini
Affiliation:
Mathematisches Institut I Universität Karlsruhe Postfach6980 D-76128 Karlsruhe 1Germany E-mail: AB05@DKAUNI2.Bitnet
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f1, …, fN ∈ A(D). It is shown that the ideal I(f1,…, fN) generated by the functions f1 (j = 1,…, N) equals the ideal

if and only if the functions fj have no common zero on the boundary of the unit disk D.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Birtel, F.T., ‘Function algebras’, in Proc. Intern. Sympos. on Function Algebras (Tulane University, Chicago, 1966).Google Scholar
[2]Garnett, J.B., Bounded analytic functions (Academic Press, New York, 1981).Google Scholar
[3]Hoffman, K., Banach spaces of analytic functions (Prentice Hall, Englewood Cliffs, N.Y., 1962).Google Scholar
[4]Mortini, R., Zur Idealstruktur der Disk-Algebra A(D) und der Algebra H∞, Dissertation (University Karlsruhe, 1984).Google Scholar
[5]Mortini, R., ‘The Chang-Marshall algebras’, Mitt. Math. Sem. Gieβen 185 (1988), 176.Google Scholar
[6]von Renteln, M., ‘Divisibility structure and finitely generated ideals in the Disc Algebra’, Monatsh. Math. 82 (1976), 5156.CrossRefGoogle Scholar
[7]von Renteln, M., ‘Hauptideale und äußere Funktionen im Ring H, Arch. Math. 28 (1977), 519524.Google Scholar
[8]von Renteln, M., ‘Topologische Nullteiler und endlich erzeugte Ideale in gewissen Algebren holomorpher Funktionen’, Acta Math. Acad. Sci. Hungar. 32 (1978), 229233.Google Scholar