Published online by Cambridge University Press: 17 April 2009
This papar constructs all homomorphisms of inverse semigroups which factor through an E-unitary inverse semigroup; the construction is in terms of a semilattice component and a group component. It is shown that such homomorphisms have a unique factorisation βα with α preserving the maximal group image, β idempotent separating, and the domain I of β E-unitary; moreover, the P-representation of I is explicitly constructed. This theory, in particular, applies whenever the domain or codomain of a homomorphism is E-unitary. Stronger results are obtained for the case of F-inverse monoids.
Special cases of our results include the P-theorem and the factorisation theorem for homomorphisms from E-unitary inverse semigroups (via idempotent pure followed by idempotent separating). We also deduce a criterion of McAlister–Reilly for the existence of E-unitary covers over a group, as well as a generalisation to F-inverse covers, allowing a quick proof that every inverse monoid has an F-inverse cover.