Published online by Cambridge University Press: 01 August 2018
For a finite group $G$, denote by $\unicode[STIX]{x1D707}(G)$ the degree of a minimal permutation representation of $G$. We call $G$ exceptional if there is a normal subgroup $N\unlhd G$ with $\unicode[STIX]{x1D707}(G/N)>\unicode[STIX]{x1D707}(G)$. To complete the work of Easdown and Praeger [‘On minimal faithful permutation representations of finite groups’, Bull. Aust. Math. Soc.38(2) (1988), 207–220], for all primes $p\geq 3$, we describe an exceptional group of order $p^{5}$ and prove that no exceptional group of order $p^{4}$ exists.