Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T19:39:34.216Z Has data issue: false hasContentIssue false

On monoids related to braid groups

Published online by Cambridge University Press:  17 April 2009

Ruth Corran
Affiliation:
School of Mathematics, University of New South Wales, Sydney NSW 2052, Australia Department of Mathematics and Computer Science, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. Theses
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Baez, J.C., ‘Link invariants of finite type and perturbation theory’, Lett. Math. Phys. 26 (1992), 4351.Google Scholar
[2]Birman, J.S., ‘New points of view in knot theory’, Bull. Amer. Math. Soc. 28 (1993), 253287.Google Scholar
[3]Brieskorn, E. and Saito, K., ‘Artin-Gruppen und Coxeter-Gruppen’, Invent. Math. 17 (1972), 245271.Google Scholar
[4]Broué, M., Malle, G. and Rouquier, R., ‘Complex reflection groups, braid groups, Hecke algebrasJ. Reine Angew. Math. 500 (1998), 127190.Google Scholar
[5]Corran, R., ‘A normal form for a class of monoids including the singular braid monoids’, J. Algebra 223 (2000), 256282.Google Scholar
[6]Garside, F.A., ‘The braid group and other groups’, Quart. J. Math. Oxford Ser. (2) 20 (1969, 235254.CrossRefGoogle Scholar
[7]Gemein, B., ‘Singular braids and Markov's theorem’, J. Knot Theory Ramifications 6 (1997), 441454.Google Scholar
[8]Fenn, R., Rolfsen, D. and Zhu, J., ‘Centralisers in the braid group and singular braid monoid’, Enseign. Math. (2) 42 (1996), 7596.Google Scholar