Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T07:34:06.615Z Has data issue: false hasContentIssue false

On the one-dimensional nonlinear elastohydrodynamic lubrication

Published online by Cambridge University Press:  17 April 2009

Daniel Goeleven
Affiliation:
Department of MathematicsFacultes UniversitairesN.-D, de la Paix B-5000 NamurBelgium
Van Hien Nguyen
Affiliation:
Department of MathematicsFacultes UniversitairesN.-D, de la Paix B-5000 NamurBelgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper the authors prove an abstract theorem for solutions of a variational inequality on a cone and use it to study the free boundary problem of elastohydrodynamic lubrication from mechanical engineering. The mathematical model is set in a one-dimensional geometry. The existence of a solution for every non-negative lubricant viscosity is proved, and some properties useful for the numerical analysis are obtained.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Adams, R.A., Sobolev spaces (Academic Press, New York, NY, 1975).Google Scholar
[2]Bayada, G. and Chambat, M., ‘Existence and uniqueness for a lubrication problem with non-regular conditions on the free boundary’, Boll. Un. Mat. Ital. 6 (1984), 543557.Google Scholar
[3]Brézis, H., ‘Equations et inéquations non linéaires dans les espaces vectoriels en dualité’, Ann. Inst. Fourier 18 (1968), 115175.CrossRefGoogle Scholar
[4]Brézis, H., Analyse fonctionnelle, Théorie et applications (Masson, Paris, 1983).Google Scholar
[5]Frene, J. and Nicolas, D., Lubrification hydrodynamique. Paliers et butées, Collection de la Direction des Etudes et Recherches d'Electricité de France (Eyrolles, Paris, 1980).Google Scholar
[6]Goeleven, D., ‘On the solvability of noncoercive variational inequalities’, J. Optim. Theory Appl. 79 (1993), 493511.CrossRefGoogle Scholar
[7]Goeleven, D., On noncoercive variational inequalities and some applications in Nonsmooth Mechanics, Ph.D. Mathematics (Department of Mathematics, Facultés Universitaires de Namur, 1993).Google Scholar
[8]Goeleven, D. and Théra, M., Recession functions and the solvability of noncoercive variational inequalities, Mathematics Research Report (Department of Mathematics, Facultés Universitaires de Namur, 1993).Google Scholar
[9]Gossez, J.P. and Mustonen, V., ‘Variational inequalities in Orlicz-Sobolev spaces’, Nonlinear Anal. 11 (1987), 379392.CrossRefGoogle Scholar
[10]Gowda, M.S. and Seidman, J., ‘Generalized linear complementary problems’, Math. Programming 46 (1990), 329340.CrossRefGoogle Scholar
[11]Guo, J.S., ‘A variational inequality associated with a lubrication problem’, Nonlinear Anal. 16 (1991), 1314.CrossRefGoogle Scholar
[12]Hu, B., ‘A quasi-variational inequality arising in elastohydrodynamics’, SIAM J. Math. Anal. 21 (1990), 1836.CrossRefGoogle Scholar
[13]Kikuchi, N. and Oden, J.T., Contact problem in elasticity: A study of variational inequalities and finite elements methods, SIAM Stud. Appl. Math. (SIAM, Philadelphia, PA, 1988).CrossRefGoogle Scholar
[14]Kostreva, M.M., ‘Elasto-hydrodynamic lubrication: A non-linear complementarity problem’, Intnat. J. Numer. Methods Fluids 4 (1984), 337397.Google Scholar
[15]Lemke, C.E., ‘Bimatrix equilibrium points and mathematical programming’, Management Sci. 11 (1965), 681689.CrossRefGoogle Scholar
[16]Oden, J.T. and Wu, S.R., ‘Existence of solutions to the Reynolds equation of elastohydrodynamic lubrication’, Internat. J. Engrg. Sci. 23 (1985), 207215.CrossRefGoogle Scholar
[17]Oh, K.P., ‘The numerical solution of dynamically loaded elastohydrodynamic contact as a nonlinear complementarity problem’, Trans. AMSE, J. of Tribology 106 (1984), 8895.Google Scholar
[18]Oh, K.P., ‘The formulation of the mixed lubrication problem as a generalized nonlinear complementarity problem’, Trans. AMSE, J. of Tribology 108 (1986), 598603.Google Scholar
[19]Rodrigues, J.-E., ‘Remarks on the Reynolds problem of elastohydrodynamic lubrication’, European J. Appl. Math. 4 (1993), 8396.CrossRefGoogle Scholar
[20]Sibony, N., Itérations et Approximations (Hermann, Paris, 1988).Google Scholar