No CrossRef data available.
Article contents
On the signature of generalised Seifert fibrations
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this note, we prove a signature product formula for generalised Seifert fibrations. We also discuss how this result can be viewed using the theory of minimal models.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1993
References
[1]Chern, S.S., Hirzebruch, F. and Serre, J.P., ‘On the index of a fibered manifold’, Proc. Amer. Math. Soc. 8 (1957), 587–596.CrossRefGoogle Scholar
[2]Epstein, D., ‘Foliations with all leaves compact’, Ann. Inst. Fourier, Grenoble 26 (1976), 265–282.CrossRefGoogle Scholar
[3]Ghys, E., ‘Feuilletages riemanniens sur les variétés simplement connexes’, Ann. Inst. Fourier, Grenoble 34.4 (1984), 203–223.CrossRefGoogle Scholar
[4]Greub, W., Halperin, S. and Vanstone, R., Connections, curvature and cohomology Vol 2 (Academic Press, New York, 1973).Google Scholar
[5]Grivel, P., ‘Formes différentielles et suites spectrales’, Ann. Inst. Fourier, Grenoble 29.3 (1979), 17–37.CrossRefGoogle Scholar
[6]Haefliger, A., ‘Groupoïdes d'holonomie et classifiants’, Astérisque 116 (1984), 70–97.Google Scholar
[7]Halperin, S., ‘Lectures on minimal models’, Publ. Internes de I'UER de Math Pures et Appl., Univ. de Lille I 111 (1977).Google Scholar
[8]Kamber, F. and Tondeur, P., ‘Foliations and metrics’, Proc. Special Year in Geometry, Maryland (1981–82), in Prog, in Math. 32 (Birkhäuser, Boston, 1983), pp. 103–152.Google Scholar
[9]Lehmann, D., ‘Modèle minimal relatif des feuilletages’, in Lect. Notes in Math. 1183 (Springer, Berlin, Heidelberg, New York, 1986), pp. 250–258.Google Scholar