Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T19:19:08.296Z Has data issue: false hasContentIssue false

A property of subgroups of free groups

Published online by Cambridge University Press:  17 April 2009

Gerhard Rosenberger
Affiliation:
Fachbereich Mathematik, Universität Dortmund, Postfach 50 05 00, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let F be a free group on a1,…, ap (p ≥ 1), and X a finitely generated subgroup in F. Suppose either that X contains some non-trivial power of , or that p is even and X contains some nontrivial power of [a1, a2]…[ap−1, ap]. We discuss some properties of X which we can derive from this assumption.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Hoare, A.H.M., Karrass, A. and Solitar, D., ‘Subgroups of infinite index in Fuchsian groups’, Math. Z. 125 (1972), 5969.CrossRefGoogle Scholar
[2]Lyndon, R.C. and Schupp, P.E., Combinatorial Group Theory 189, (Ergebnisse der Math-ematik) (Springer-Verlag, Berlin, Heidelberg, New York, 1977).Google Scholar
[3]Magnus, W., Karrass, A. and Solitar, D., Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations: Interscience Tracts in Pure and Applied Mathematics 20 (Wiley, New York, 1966).Google Scholar
[4]Rosenberger, G., ‘Über Darstellungen von Elementen und Untergruppen in freien Produkten’, in Proceedings of ‘Groups-Korea 1983’: Lecture Notes in Mathematics 1098, pp. 142160 (Springer-Verlag, Berlin, Heidelberg, New York, 1984).CrossRefGoogle Scholar
[5]Rosenberger, G., ‘Minimal generating systems for plane discontinuous groups and an equation in free groups’, in Proceedings of ‘Groups-Korea 1988’: Lecture Notes in Mathematics 1398, pp. 170186 (Springer-Verlag, Berlin, Heidelberg, New York, 1989).CrossRefGoogle Scholar
[6]Zieschang, H., Vogt, E. and Coldewey, H.-D., ‘Surfaces and Planar Discontinuous Groups’, in Lecture Notes in Mathematics 835 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).Google Scholar