Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T01:33:43.393Z Has data issue: false hasContentIssue false

Regularity of locally convex surfaces

Published online by Cambridge University Press:  17 April 2009

Friedmar Schulz
Affiliation:
Department of Mathematics, The University of Iowa, Iowa City, IA 52242, United States of America Centre for Mathematical Analysis, The Australian National University, GPO Box 4, Canberra ACT 2601, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interior estimates are derived for the C2, µ-Hölder norm of the radius vector X ∈ C1, 1 (Ω) of a locally convex surface Σ in terms of the first fundamental form IΣ, the Gauss curvature K and the integral ∫ |H| . Here H is the mean curvature of Σ. The coefficients gij of IΣ are assumed to belong to the Hölder class C2, µ (Ω) for some μ, 0 < μ < 1. A boundary condition is discussed which ensures an estimate for ∫ | H | .

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Alexandrow, A.D., Die innere Geometrie der konvexen Flächen (Akademie-Verlag, Berlin, 1955).Google Scholar
[2]Delanoë, Ph., ‘Réalisations globalement régulières de disques strictement convexes dans les espaces d'Euclide et de Minkowski par la méthode de Weingarten’, Ann. Sci. École Norm. Sup. (4) 21 (1988), 637652.CrossRefGoogle Scholar
[3]Deturck, D.M. and Kazdan, J.L., ‘Some regularity theorems in Riemannian geometry’, Ann. Sci. École. Norm. Sup. (4) 14 (1981), 249260.CrossRefGoogle Scholar
[4]Efimow, N.M., Flächenverbiegungen im Grossen, (mit einem Nachtrag von E. Rembs und K.P. Grotemeyer) (Akademie-Verlag, Berlin, 1957).Google Scholar
[5]Heinz, E., ‘On elliptic Monge-Ampère equations and Weyl's embedding problem’, J. Analyse Math. 7 (1959), 152.CrossRefGoogle Scholar
[6]Heinz, E., ‘Über die Differentialungleichung 0 < α ≤ rt - s 2β < ∞’, Math. Z. 72 (1959), 107126.CrossRefGoogle Scholar
[7]Heinz, E., ‘Neue a-priori-Abschätzungen für den Ortsvektor einer Fläche positiver Gaussscher Krümmung durch ihr Linienelement’, Math. Z. 74 (1960), 129157.CrossRefGoogle Scholar
[8]Heinz, E., ‘Über das Nichtverschwinden der Funktionaldeterminante bei einer Klasse eineindeutiger Abbildungen’, Math. Z. 105 (1968), 8789.CrossRefGoogle Scholar
[9]Heinz, E., ‘Existence theorems for one-to-one mappings associated with elliptic systems of second order II’, J. Analyse Math. 17 (1966), 145184.CrossRefGoogle Scholar
[10]Herglotz, G., ‘Über die Starrheit der Eiflächen’, Abh. Math. Sem. Univ. Hamburg 15 (1943), 127129.CrossRefGoogle Scholar
[11]Klingenberg, W., Eine Vorlesung über Differentialgeometrie (Springer-Verlag, Berlin, Heidelberg, New York, 1973).CrossRefGoogle Scholar
[12]Lewy, H., ‘On the non-vanishing of the Jacobian in certain one-to-one mappings’, Bull. Amer. Math. Soc. 42 (1936), 689692.CrossRefGoogle Scholar
[13]Lewy, H., ‘A priori limitations for solutions of Monge-Ampère equations’, Trans. Amer. Math. Soc. 37 (1935), 417434.Google Scholar
[14]Lewy, H., ‘On the existence of a closed convex surface realizing a given Riemannian metric’, Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 104106.CrossRefGoogle ScholarPubMed
[15]Minkowski, H., ‘Volumen und Oberfläche’, Math. Ann. 57 (1903), 447495.CrossRefGoogle Scholar
[16]Nikolaev, I.G. and shefel, S.Z.', ‘Smoothness of convex surfaces on the basis of differential properties of quasiconformal mappings’, Soviet Math. Dokl. 26 (1982), 599602.Google Scholar
[17]Nikolaev, I.G. and Shefel, S.Z.', ‘Convex surfaces with positive bounded specific curvature and a priori estimates for Monge-Ampère equations’, Siberian Math. J. 26 (1985), 572586.CrossRefGoogle Scholar
[18]Nirenberg, L., ‘The Weyl and Minkowski problems in differential geometry in the large’, Comm. Pure Appl. Math. 6 (1953), 337394.CrossRefGoogle Scholar
[19]Pogorelov, A.V., Extrinsic geometry of convex surfaces (American Mathematical Society, Providence, Rhode Island, 1973).CrossRefGoogle Scholar
[20]Sabitov, I. Kh., ‘The regularity of convex regions with a metric that is regular in the Hölder classes’, Siberian Math. J. 17 (1976), 681687.CrossRefGoogle Scholar
[21]Sabitov, I. Kh. and Shefel, S.Z.', ‘The connections between the order of smoothness of a surface and its metric’, Siberian Math. J. 17 (1976), 687694.CrossRefGoogle Scholar
[22]Schulz, F., ‘On elliptic Monge-Ampère equations with a remark on Weyl's embedding problem’, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1981 (1981), 93108.Google Scholar
[23]Schulz, F., ‘On the differential equation r ts 2 = f and Weyl's embedding problem’, Math. Z. 179 (1982), 110.CrossRefGoogle Scholar
[24]Schulz, F., ‘A priori estimates for solutions of Monge-Ampère equations’, Arch. Rational Mech. Anal. 89 (1985), 123133.CrossRefGoogle Scholar
[25]Schulz, F., ‘Univalent solutions of elliptic systems of Heinz-Lewy type’, Ann. Inst. H. Poincaré, Anal. Non Linéaire 6 (1989), 347361.CrossRefGoogle Scholar
[26]Schulz, F., ‘Second derivative estimates for solutions of two-dimensional Monge-Ampère equations’, Proc. Amer. Math. Soc. (to appear).Google Scholar
[27]Schulz, F. and Liao, L.-Y., ‘Regularity of solutions of two-dimensional Monge-Ampère equations’, Trans. Amer. Math. Soc. 307 (1988), 271277.Google Scholar
[28]Shefel, S.Z.', ‘Geometric properties of immersed manifolds’, Siberian Math. J. 26 (1985), 133147.CrossRefGoogle Scholar
[29]Weyl, H., ‘Über die Bestimmung einer geschlossenen Fläche durch ihr Linienelement’, in Selecta Hermann Weyl, pp. 148178 (Basel-Stuttgart, 1956).Google Scholar