Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T19:39:24.666Z Has data issue: false hasContentIssue false

Semi-Baer modules over domains

Published online by Cambridge University Press:  17 April 2009

Sang Bum Lee
Affiliation:
Department of Mathematical Education, Sangmyung University, Seoul 110–743, Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a commutative domain R with 1, R-module M is called a semi-Baer module if for all divisible R-modules D. We show that finitely generated modules of projective dimension at most 1 are semi-Baer modules and if R is Prüfer or Matlis, then all modules of projective dimension at most 1 are semi-Baer modules.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Baer, R., ‘The subgroups of the elements of finite order of an abelian group’, Ann. Math. 33 (1936), 766781.CrossRefGoogle Scholar
[2]Eklof, P.C. and Fuchs, L., ‘Baer modules over valuation domains’, Ann. Mat. Pura Appl. 150 (1988), 363373.CrossRefGoogle Scholar
[3]Eklof, P.C., Fuchs, L. and Shelah, S., ‘Baer modules over domains’, Trans. Amer. Math. Soc. 322 (1990), 547560.Google Scholar
[4]Fuchs, L., ‘Simply presented torsion modules over valuation domains’, in Abelian groups and modules, Lecture Notes Pure Appl. Math. 182 (Marcel Dekker, New York, 1996), pp. 2344.Google Scholar
[5]Fuchs, L. and Salce, L., Modules over valvation domains, Lecture Notes in Pure and Appl. Math. 97 (Marcel Dekkar, New York, 1985).Google Scholar
[6]Fuchs, L. and Salce, L., Modules over non-noetherian domains, Math. Surveys and Monographs 84 (Amer. Math. Soc., Providence R.I., 2001).Google Scholar
[7]Griffith, P., ‘A solution to the splitting mixed problem of Baer’, Trans. Amer. Math. Soc. 139 (1969), 261269.CrossRefGoogle Scholar
[8]Kaplansky, I., ‘The splitting of modules over integral domains’, Arch. Math. 13 (1962), 341343.CrossRefGoogle Scholar
[9]Lee, S.B., ‘On divisible modules over domains’, Arch. Math. 53 (1989), 259262.CrossRefGoogle Scholar
[10]Rotman, J., An introduction to homological algebra (Academic Press, New York, 1975).Google Scholar