Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T19:47:41.937Z Has data issue: false hasContentIssue false

Some inequalities on quasi-subordinate functions

Published online by Cambridge University Press:  17 April 2009

Fuyao Ren
Affiliation:
Department of Mathematics, Fudan University, Shanghai People's, Republic of China
Shigeyoshi Owa
Affiliation:
Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577, Japan
Seiichi Fukui
Affiliation:
Department of Mathematics Faculty of Education, Wakayama University, Wakayama 640, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The object of the present paper is to derive some interesting coefficient estimates for quasi-subordinate functions. Furthermore, a conjecture for quasi-subordinate functions is shown.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Lindelöf, E., ‘Mémoire sur certaines inégalités dans la théorie des fonctions monogénes et sur quelques propriétés nouvelles de ces fonctions dans le voisinage d'un point singulier essential’, Acta. Soc. Sci. Fenn. 35 (1909), 135.Google Scholar
[2]Littlewood, J.E., ‘On inequalities in the theory of functions’, Proc. London Math. Soc. 23 (1925), 481519.Google Scholar
[3]Littlewood, J.E., Lectures on the theory of functions (Oxford University Press, 1944).Google Scholar
[4]Robertson, M.S., ‘Quasi-subordination and coefficient conjecture’, Bull. Amer. Math. Soc. 76 (1970), 19.Google Scholar
[5]Rogosinski, W., ‘On subordinate functions’, Proc. Cambridge Philos. Soc. 35 (1939), 126.CrossRefGoogle Scholar
[6]Rogosinski, W., ‘On the coefficients of subordinate functions’, Proc. London Math. Soc. 48 (1943), 4882.Google Scholar
[7]Xia, D. and Chang, K., ‘Some inequalities on subordinate functions’, Acta. Math. 8 (1958), 408412.Google Scholar