Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T19:31:21.429Z Has data issue: false hasContentIssue false

Stein quasigroups I: Combinatorial aspects

Published online by Cambridge University Press:  17 April 2009

M.J. Pelling
Affiliation:
Balliol College, Oxford, England;
D.G. Rogers
Affiliation:
Department of Mathematics, University of Western Australia, Nedlands, Western Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper, in conjunction with its algebraic sequel, aims to provide a foundation, long outstanding, to the theory of quasigroups obeying the law x(xy) = yx , otherwise known as Stein quasigroups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1978

References

[1]Bose, R.C. and Shrikhande, S.S., “On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of EulerTrans. Amer. Math. Soc. 95 (1960), 191209CrossRefGoogle Scholar
[2]Brayton, R.K., Coppersmith, Donald and Hoffman, A.J., “Self-orthogonal Latin squares of all orders n ≠ 2, 3, 6”, Bull. Amer. Math. Soc. 80 (1974), 116118.CrossRefGoogle Scholar
[3]Dénes, J., Keedwell, A.D., Latin squares and their applications (Akadémiai Kiadó, Budapest; English Universities Press, London, 1974).Google Scholar
[4]Guérin, Roger, “Existence et propriétés dés carrés latins orthogonaux. I”, Publ. Inst. Statist. Univ. Paris 15 (1966), 113213.Google Scholar
[5]Guérin, Roger, “Existence et propriétés des carrés latins orthogonaux. II”, Publ. Inst. Statist. Univ. Paris 15 (1966), 215293.Google Scholar
[6]Hanani, Haim, “The existence and construction of balanced incomplete block designs”, Ann. Math. Statist. 32 (1961), 361386.CrossRefGoogle Scholar
[7]Hanani, Haim, “A balanced incomplete block design”, Ann. Math. Statist. 36 (1965), 711.CrossRefGoogle Scholar
[8]Hanani, Haim, Ray-Chaudhuri, D.K. and Wilson, Richard M., “On resolvable designs”, Discrete Math. 3 (1972), 343357.CrossRefGoogle Scholar
[9]Lindner, Charles C., “Construction of quasigroups satisfying the identity X (XY) = YX”, Canad. Math. Bull. 14 (1971), 5759.CrossRefGoogle Scholar
[10]Mendelsohn, N.S., “Combinatorial designs as models of universal algebras”, Recent progress in combinatorics, 123132 (Proc. Third Waterloo Conf. Combinatorics, 1968. Academic Press, New York and London, 1969).Google Scholar
[11]Pelling, M.J. and Rogers, D.G., “Stein quasigroups (II): algebraic aspects”, submitted.Google Scholar
[12]Sade, A., “Produit direct singulier de quasigroupes orthogonaux et anti-abéliens”, Ann. Soc. Sci. Bruxelles Sér. I 74 (1960), 9199.Google Scholar
[13]Stein, Sherman K., “On the foundations of quasigroups”, Trans. Amer. Math. Soc. 85 (1957), 228256.CrossRefGoogle Scholar