Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T01:39:19.581Z Has data issue: false hasContentIssue false

The topology of the space of Denjoy integrable functions

Published online by Cambridge University Press:  17 April 2009

Chew Tuan Seng
Affiliation:
National University of Singapore, Department of Mathematics Kent Ridge, Singapore 0511, Republic of Singapore
Lee Peng Yee
Affiliation:
National University of Singapore, Department of Mathematics Kent Ridge, Singapore 0511, Republic of Singapore
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, the topology of the Denjoy space and characterisation of precompact sets in the Denjoy space are given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Chew, T.S., ‘Nonlinear Henstock-Kurzweil integrals and representation theorems’, SEA Bull. Math. 12 (1988), 97108.Google Scholar
[2]Chew, T.S., ‘The superposition operators in the space of Henstock-Kurzweil integrable functions’, Real Analysis Symposium, (Coleraine, 1988).Google Scholar
[3]Köthe, G., Topological vector spaces I (Springer-Verlag, Berlin, Heidleberg, New York, 1969).Google Scholar
[4]Krasnoselskii, M.A., Integral operators in spaces of summable functions (Noordhoff, 1976).CrossRefGoogle Scholar
[5]Lee, P.Y. and Chew, T.S., ‘A better convergence theorem for Henstock integrals’, Bull. London Math. Soc. 17 (1985), 557564.Google Scholar
[6]Lee, P.Y. and Chew, T.S., ‘A Riesz-type definition of the Denjoy integral’, Real Analysis Exchange 11 (1985/1986), 221227.Google Scholar
[7]Lee, P.Y. and Chew, T.S., ‘On convergence theorems for the nonabsolute integrals’, Bull. Austral. Math. Soc. 34 (1986), 133140.Google Scholar
[8]Lee, P.Y., Lanzhou lectures on Henstock integration (World Scientific, 1989).Google Scholar
[9]Nakanishi, S., ‘L'intégration de Denjoy et l'intégration au moyen des espaces rangés, I-IV’, Proc. Japan Acad. 32 (1956), 678683; 33, (1957), 1318, 265270; 34 (1958), 96101.Google Scholar
[10]Saks, S., Theory of the integral, 2nd ed (Warsaw, 1937).Google Scholar
[11]Sargent, W.L.C., ‘On some theorems of Hahn, Banach and Steinhaus’, J. London Math. Soc. 28 (1953), 438451.CrossRefGoogle Scholar