1. Introduction
The nth s-gonal number, with $s \geq 3$ , which we denote by $\mathcal {P}_s(n)$ , is given by the formula
Polygonal numbers have been studied since antiquity [Reference Dickson6, pages 1–39] and relations between different polygonal numbers and perfect powers have received much attention (see, for example, [Reference Kim, Park and Pintér7] and the references cited therein). Kim et al. [Reference Kim, Park and Pintér7, Theorem 1.2] found all solutions to the equation $\mathcal {P}_s(n) = y^m$ when $m>2$ and $s \in \{3,5,6,8,20 \}$ for integers n and y. We extend this result (for $m>1$ ) to the case $s=10$ , that of decagonal numbers.
Theorem 1.1. All solutions to the equation
satisfy $n=y=0, n=|y|=1$ or $n=y=m=3$ .
In particular, the only decagonal number greater than 1 expressible as a perfect mth power with $m>1$ is $\mathcal {P}_{10}(3) = 3^3$ .
We will prove Theorem 1.1 by carrying out a descent argument to obtain various ternary Diophantine equations, to which one may associate Frey elliptic curves. The difficulty in solving the equation $\mathcal {P}_{s}(n) = y^m$ for a fixed value of s is due to the existence of the trivial solution $n=y=1$ (for any value of m). We note that adapting our method of proof also works for the cases $s \in \{3,5,6,8,20 \}$ mentioned above, but will not extend to any other values of s (see Remark 3.1).
2. Descent and small values of m
We note that it will be enough to prove Theorem 1.1 in the case $m=p$ , prime. We write (1.1) as
and suppose that $n,y \in \mathbb {Z}$ satisfy this equation with $n \ne 0$ .
Case 1: $3 \nmid n$
If $3 \nmid n$ , then n and $4n-3$ are coprime, so there exist coprime integers a and b such that
It follows that
If $p=2$ , we see that $(2a-b)(2a+b)=3$ , so that $a = b = \pm 1$ and so $n=|y|=1$ . If $p=3$ or $p=5$ , then using the Thue equation solver in Magma [Reference Bosma, Cannon and Playoust5], we also find that $a=b=1$ .
Case 2: $3 \parallel n$
Suppose that $3 \parallel n$ (that is, $\mathrm {ord}_3(n)=1$ ). Then, after dividing (2.1) by $3^{\mathrm {ord}_3(y)p}$ , we see that there exist coprime integers t and u with $3 \nmid t$ such that
Then
If $p=2$ , we have $(2t-u)(2t+u)=1$ , which has no solutions. If $p=3$ , then we have $4t^3-3u^3=1$ and, using the Thue equation solver in Magma [Reference Bosma, Cannon and Playoust5], we verify that $u=t=1$ is the only solution to this equation. This gives $n=y=3$ . If $p=5$ , Magma’s Thue equation solver shows that there are no solutions.
Case 3: $3^2 \mid n$
If $3^2 \mid n$ , then $3 \parallel 4n-3$ and, arguing as in Case 2, there exist coprime integers v and w with $3 \nmid w$ such that
So,
If $p=2$ , then as in Case 2 we obtain no solutions. If $p=3$ or $p=5$ , then we use Magma’s Thue equation solver to verify that there are no solutions with $v \ne 0$ .
3. Frey curves and the modular method
To prove Theorem 1.1, we will associate Frey curves to equations (2.2), (2.3) and (2.4) and apply Ribet’s level-lowering theorem [Reference Ribet8, Theorem 1.1] to obtain a contradiction. We describe this process as level-lowering the Frey curve. We have considered the cases $p=2,3$ and $5$ in Section 2 and so we will assume that $m=p$ is prime with $p \geq 7$ .
We note that at this point we could directly apply [Reference Bennett and Skinner3, Theorem 1.2] to conclude that the only solutions to (3.1) are $a=b=1$ , giving $n=1$ , and apply [Reference Bennett2, Theorem 1.2] to show that (3.2) and (3.3) have no solutions. The computations for (3.1) are not explicitly carried out in [Reference Bennett and Skinner3], so for the convenience of the reader and to highlight why the case $s=10$ is somewhat special, we provide some details of the arguments.
Case 1: $3 \nmid n$
We write (2.2) as
which we view as a generalised Fermat equation of signature $(p,p,2)$ . We note that the three terms are integral and coprime.
We suppose that $ab \ne \pm 1$ . Following the recipes of [Reference Bennett and Skinner3, pages 26–31], we associate Frey curves to (3.1). We first note that b is odd, since $b^p = 4n-3$ . If $a \equiv 1 \pmod {4}$ , we set
If $a \equiv 3 \pmod {4}$ , we set
If a is even, we set
We level-lower each Frey curve and find that for $i=1,2,3,$ we have $E_i \sim _p f_i$ for $f_i$ a newform at level $N_{p_i}$ , where $N_{p_1} = 36, N_{p_2} = 72$ and $N_{p_3} = 18$ . The notation $E \sim _p f$ means that the mod-p Galois representation of E arises from f. There are no newforms at level $18$ and so we focus on the curves $E_1$ and $E_2$ . There is a unique newform, $f_1$ , at level $36$ , and a unique newform, $f_2$ , at level $72$ .
The newform $f_1$ has complex multiplication by the imaginary quadratic field $\mathbb {Q}(\!\sqrt {-3})$ . This allows us to apply [Reference Bennett and Skinner3, Proposition 4.6]. Since $2 \nmid ab$ and $3 \nmid ab$ , we conclude that $p=7$ or $13$ and that all elliptic curves of conductor $2p$ have positive rank over $\mathbb {Q}(\!\sqrt {-3})$ . However, it is straightforward to check that this is not the case for $p=7$ and $13$ . We conclude that $E_1 \not \sim _p f_1$ .
Let $F_2$ denote the elliptic curve with Cremona label 72a2 whose isogeny class corresponds to $f_2$ . This elliptic curve has full two-torsion over the rationals and has j-invariant $2^{4} \cdot 3^{-2} \cdot 13^{3}$ . We apply [Reference Bennett and Skinner3, Proposition 4.4], which uses an image of inertia argument, to obtain a contradiction in this case too.
Remark 3.1. The trivial solution $a=b=1$ (or $n=y=1$ ) corresponds to the case $i=1$ above. The only reason we are able to discard the isomorphism $E_1 \sim _p f_1$ is because the newform $f_1$ has complex multiplication. The modular method would fail to eliminate the newform $f_1$ otherwise. For each value of s, we can associate to (1.1) generalised Fermat equations of signature $(p,p,2)$ , $(p,p,3)$ and $(p,p,p)$ . We found we could only obtain newforms with complex multiplication (when considering the case corresponding to the trivial solution) when $s = 3, 6, 8, 10$ or $20$ . A similar strategy of proof also works for $s=5$ using the work of Bennett [Reference Bennett1, page 3] on equations of the form $(a+1)x^n-ay^n = 1$ to deal with the trivial solution.
Case 2: $3 \parallel n$
We rewrite (2.3) as
which we view as a generalised Fermat equation of signature $(p,p,3)$ . The three terms are integral and coprime. We suppose that $tu \ne \pm 1$ . Using the recipes of [Reference Bennett, Vatsal and Yazdani4, pages 1401–1406], we associate to (3.2) the Frey curve
We level-lower $E_4$ and find that $E_4 \sim _p f$ , where f is a newform at level $6$ , an immediate contradiction, as there are no newforms at level $6$ .
Case 3: $3^2 \mid n$
We rewrite (2.4) as
which we view as a generalised Fermat equation of signature $(p,p,3)$ . The three terms are integral and coprime. We suppose that $vw \ne \pm 1$ . The Frey curve we attach to (3.3) is
We level-lower and find that $E_5 \sim _p f$ , where f is a newform at level $6$ , a contradiction as in Case 2.
This completes the proof of Theorem 1.1.