Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T17:44:20.722Z Has data issue: false hasContentIssue false

VARIATION IN WEIGHT OF ALEOCHARA BILINEATA (COLEOPTERA: STAPHYLINIDAE) IN RELATION TO HOST SIZE AND REPRODUCTION

Published online by Cambridge University Press:  31 May 2012

X. Langlet
Affiliation:
Laboratoire de Zoologie, Institut National de la Recherche Agronomique, Domaine de la Motte au Vicomte, BP29 35653, Le Rheu Cédex, France
G. Boivin
Affiliation:
Centre de Recherche et de Développement en Horticulture, Agriculture et agro-alimentaire Canada, 430 boulevard Gouin, Saint-Jean-sur-Richelieu, Quebec, Canada J3B 3E6
E. Brunel
Affiliation:
Laboratoire de Zoologie, Institut National de la Recherche Agronomique, Domaine de la Motte au Vicomte, BP29 35653, Le Rheu Cédex, France
J.P. Nénon
Affiliation:
Laboratoire d'Écobiologie des Insectes Parasitoïdes, Campus de Beaulieu, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cédex, France

Abstract

No sexual dimorphism in weight was observed at emergence of adult Aleochara bilineata Gyll. (Coleoptera: Staphylinidae). The weight of adults was strongly correlated with the size of the pupa in which the parasitoid developed. Newly emerged adults increased in weight after feeding, and this increase was greater in females than in males, reflecting the beginning of oogenesis. We showed that females invested simultaneously in reproduction and somatic functions the first day following mating. Although males and females showed no significant differences in weight at emergence, the females fed actively upon emergence and weighed significantly more than the males for 30 days after emergence. After that period, most of the eggs has been laid and both male and female weights were similar.

Résumé

Aucune différence de poids entre les sexes n’a été observée chez les adultes de Aleochara bilineata Gyll. (Coleoptera : Staphylinidae) à l’émergence. Le poids des adultes est fortement relié à la taille de la pupe hôte dans laquelle le parasitoïde a effectué son développement. Le poids des adultes nouvellement émergés a augmenté après qu’ils aient mangé et cette augmentation pondérale était supérieure chez les femelles reflétant le démarrage de l’ovogénèse. Nous montrons que les femelles investissent simultanément dans la reproduction et les fonctions somatiques le jour suivant l’accouplement. A l’émergence, le poids des mâles et des femelles n’étaient pas significativement différents mais ces dernières se sont nourries activement dès l’émergence et leur poids est devenu significativement supérieur à celui des mâles pour les 30 premiers jours. Après cette période, la plupart des oeufs ont été pondus et le poids des mâles et des femelles est redevenu similaire.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlstrom-Olsson, M. 1994. Host preference of Aleochara bilineata and A. bipustulata (Coleoptera: Staphylinidae) in relation to host size and host fly species (Diptera: Anthomyiidae): a laboratory study. Norwegian Journal of Agricultural Sciences Supplement 16: 283291.Google Scholar
Andersen, J., and Nilssen, A.C.. 1983. Intrapopulation size variation of free-living and tree-boring Coleoptera. The Canadian Entomologist 115: 14531464.Google Scholar
Aspi, J., and Hoikkala, A.. 1995. Male mating success and survival in the field with respect to size and courtship song characters in Drosophila littoralis and D. montana (Diptera: Drosophilidae). Journal of Insect Behavior 8: 6785.CrossRefGoogle Scholar
Atkins, M.D. 1967. The effect of rearing temperature on the size and fat content of the Douglas-fir Beetle. The Canadian Entomologist 99: 181187.CrossRefGoogle Scholar
Beaver, R.A. 1974. Intraspecific competition among bark beetle larvae (Coleoptera: Scolytidae). Journal of Animal Ecology 43: 455467.Google Scholar
Bromand, B. 1980. Investigations on the biological control of the cabbage root fly (Hylemya brassicae) with Aleochara bilineata. Bulletin OILB/SROP 3(1): 4962.Google Scholar
Carroll, A.L. 1994. Interactions between body size and mating history influence the reproductive success of males of a tortricid moth, Zeiraphera canadensis. Canadian Journal of Zoology 72: 21242132.CrossRefGoogle Scholar
Colhoun, E.H. 1953. Notes on the stages and the biology of Baryodma ontarionis Casey (Coleoptera: Staphylinidae), a parasite of the cabbage maggot, Hylemya brassicae Bouché (Diptera: Anthomyiidae). The Canadian Entomologist 85: 18.Google Scholar
De Jong, G., and Van Noordwijk, A.J.. 1992. Acquisition and allocation of resources: genetic (co)variances, selection, and life histories. American Naturalist 139: 749770.CrossRefGoogle Scholar
Fairbairn, D.J., and Preziosi, R.F.. 1994. Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider, Aquarius remigis. American Naturalist 144: 101118.Google Scholar
Freude, H., Harde, K.W., and Lohse, G.A.. 1974. Die Kafer Mitteleuropas 5. Staphylinidae II. Goecke and Evers, Krefeld.Google Scholar
Fuldner, D. 1960. Beitrage zur Morphologie und Biologie von Aleochara bilineata Gyll. und A. bipustulata L. (Coleoptera: Staphylinidae). Zeitschrift Morphologie Ökologie Tiere 48: 312386.CrossRefGoogle Scholar
Gage, M.J.G. 1994. Associations between body size, mating pattern, testis size and sperm lengths across butterflies. Proceeding of the Royal Society of London Series B Biological Sciences 258: 247254.Google Scholar
Hertveldt, L., Van Keymenlen, M., and Gillard, A.. 1984. Simple technique for handling adults and collecting eggs of Musca domestica (Diptera: Muscidae) and Aleochara bilineata (Coleoptera: Staphylinidae). Journal of Economic Entomology 77: 267270.Google Scholar
Hönek, A. 1993. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66(3): 483492.CrossRefGoogle Scholar
Jonasson, T. 1994. Parasitoids of Delia root flies in brassica vegetable crops: coexistence and niche separation in two AIeochara species (Coleoptera: Staphylinidae). Norwegian Journal of Agricultural Sciences Supplement 16: 379386.Google Scholar
Juliano, S.A. 1985. The effects of body size on mating and reproduction in Brachinus lateralis (Coleoptera: Carabidae). Ecological Entomology 10: 271280.Google Scholar
Long, D.B. 1959. Observations on adult weight and wing area in Plusia gamma L. and Pieris brassicae L. in relation to larval population density. Entomologia Experimentalis et Applicata 2: 241248.Google Scholar
Markow, T.A., and Sawka, S.. 1992. Dynamics of mating success in experimental groups of Drosophila melanogaster (Diptera: Drosophilae). Journal of Insect Behavior 5: 375383.Google Scholar
Mendel, Z. 1986. Hymenopterous parasitoids of bark beetles (Scolytidae) in Israel: relationships between host and parasitoid size, and sex ratio. Entomophaga 31: 127137.CrossRefGoogle Scholar
Nylin, S., Wiklund, C., Wickman, P.O., and Garcia-Barros, E.. 1993. Absence of trade-offs between sexual size dimorphism and early male emergence in a butterfly. Ecology 74: 14141427.Google Scholar
Putnam, C.D. 1957. The ecology and behaviour of the cabbage root fly Eriorichia brassicae Bche. (Diptera Muscidae) and its parasites. Ph.D. thesis, Department of Zoology, Emmanuel College, Cambridge, U.K.Google Scholar
Read, D.C. 1962. Notes on the life history of Aleochara bilineata (Gyll.) (Coleoptera: Staphylinidae), and on its potential value as control agent for the cabbage maggot, Hylemya brassicae (Bouché) (Diptera: Anthomyiidae). The Canadian Entomologist 94: 417424.Google Scholar
Ruohomäki, K. 1992. Wing size variation in Epirrita autumnata (Lep., Geometridae) in relation to larval density. Oikos 53: 260266.Google Scholar
Salvo, A., and Valladares, G.. 1995. Intraspecific size variation in polyphagous parasitoids (Hym.: Parasitica), of leaf miners and its relation to host size. Entomophaga 40 (2): 273280.Google Scholar
Samsøe-Petersen, L. 1987. Laboratory method for testing side-effects of pesticides on the rove beetle Aleochara bilineata adults. Entomophaga 32: 7381.CrossRefGoogle Scholar
Sequeira, R., and Mackauer, M.. 1993. Seasonal variation in body size and offspring sex ratio in field populations of the parasitoid wasp, Aphidius ervi (Hymenoptera: Aphidiidae). Oikos 68: 340346.CrossRefGoogle Scholar
Shu-Sheng, L. 1985. Development, adult size and fecundity of Aphidius sonchi reared in two instars of its aphid host, Hyperomyzas lactucae. Entomologia Experimentalis et Applicata 37: 4148.Google Scholar
Sibly, R.M., and Calow, P.. 1986. Physiological ecology of animals. Blackwell, Oxford, U.K.Google Scholar
Singer, M.C. 1982. Sexual selection for small size in male butterflies. American Naturalist 119: 440443.Google Scholar
Smith, B.C. 1965. Growth and development of coccinellid larvae on dry foods (Coleoptera: Coccinellidae). The Canadian Entomologist 97: 760768.CrossRefGoogle Scholar
Smith, B.C. 1966. Variation in Weight, Size, and Sex Ratio of Coccinellid Adults (Coleoptera: Coccinellidae). The Canadian Entomologist 98: 639644.CrossRefGoogle Scholar
Southard, S.C., Houseweart, M.W., Jennings, D.T., and Halteman, W.. 1982. Size differences of laboratory reared and wild populations of Trichogramma minutum (Hymenoptera: Trichogrammatidae). The Canadian Entomologist 114: 693698.CrossRefGoogle Scholar
Statsoft, Inc. 1993. Statistica for Windows 4.0. Statsoft, Inc., Tulsa, Okla., U.S.A.Google Scholar
Thornhill, R., and Alcock, J. 1983. The evolution of insect mating systems. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Van Noordwijk, A.J., and De Jong, G.. 1986. Acquisition and allocation of resources: their influence on variation in life history tactics. American Naturalist 128: 137142.CrossRefGoogle Scholar