Published online by Cambridge University Press: 20 November 2018
In the theory of vector valued functions there is a theorem which states that if a function from a compact interval I into a normed linear space X is of weak bounded variation, then it is of bounded variation. The proof uses in a straightforward way the Uniform Boundedness Principle (see [2, p. 60]). The present paper grew from the question of whether an analogous theorem holds for absolutely continuous functions. The answer is in the negative, and an example will be given (Theorem 7). But it will also be shown that if X is weakly sequentially complete (e.g. an Lp space, 1 ≦ p < ∞ ), then a weakly absolutely continuous point function from / into X is absolutely continuous. The method of proof involves the construction of a countably additive set function in the standard Lebesgue-Stieltjes fashion.
The paper is divided into three parts. In Section 1 extensions of finitely additive, absolutely continuous set functions are carried out in an abstract setting. Section 2 applies this to vector valued (point) functions on the real line.