No CrossRef data available.
Article contents
Automatic Continuity of Homomorphisms in Non-associative Banach Algebras
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We introduce the concept of a rare element in a non-associative normed algebra and show that the existence of such an element is the only obstruction to continuity of a surjective homomorphism from a non-associative Banach algebra to a unital normed algebra with simple completion. Unital associative algebras do not admit any rare elements, and hence automatic continuity holds.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2013
References
[1]
Chu, C.-H., Jordan structures in geometry and analysis.
Cambridge Tracts in Mathematics, 190, Cambridge University Press, Cambridge, 2012.Google Scholar
[2]
Dales, H. G., Banach algebras and automatic continuity.
LondonMathematical SocietyMonographs, 24, Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
[3]
Dieudonné, J., Sur les homomorphismes d’espaces normés.
Bull. Sci. Math.
67(1943), 72–84.Google Scholar
[4]
Downey, L. and Enflo, Per, Operators with eigenvalues and extreme cases of stability.
Proc. Amer. Math. Soc.
132(2004), 719–724. http://dx.doi.org/10.1090/S0002-9939-03-07059-X
Google Scholar
[5]
Johnson, B. E., The uniqueness of (complete) norm topology.
Bull. Amer. Math. Soc.
73(1967), 537–539. http://dx.doi.org/10.1090/S0002-9904-1967-11735-X
Google Scholar
[6]
Kato, T., Perturbation theory for linear operators.
Die Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, New York, 1966.Google Scholar
[7]
Laursen, K. B. and Neumann, M. M., An introduction to local spectral theory.
London Mathematical Society Monographs. New Series, 20, Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
[8]
Marcos, J. C. and Velasco, M. V., The Jacobson radical of a non-associative algebra and the uniqueness of the complete norm topology.
Bull. Lond. Math. Soc.
42(2010), no. 6, 1010–1020. http://dx.doi.org/10.1112/blms/bdq060
Google Scholar
[9]
Marcos, J. C., Continuity of homomorphisms into power-associative complete normed algebras. Forum. Math., to appear.Google Scholar
[10]
Mena Jurado, J. F. and Palacios, A. Rodriguez, Weakly compact operators on non-complete normed spaces.
Expo. Math.
27(2009), no. 2, 143–151. http://dx.doi.org/10.1016/j.exmath.2008.10.005Google Scholar
[11]
Palmer, T., Banach algebras and the general theory of *-algebras. I.
Encyclopedia of Mathematics and its Applications, 49, Cambridge University Press, Cambridge, 2009.Google Scholar
[12]
Rickart, C. E., The uniqueness of the norm problem in Banach algebras.
Ann. of Math.
51(1950), 615–628. http://dx.doi.org/10.2307/1969371
Google Scholar
[13]
Rodriguez-Palacios, A., The uniqueness of complete norm topology in complete normed non-associative algebras.
J. Funct. Anal.
60(1985), no. 1, 1–15. http://dx.doi.org/10.1016/0022-1236(85)90055-2
Google Scholar
[14]
Rodriguez-Palacios, A., Continuity of densely valued homomorphisms into H*-algebras.
Quart. J. Math. Oxford Ser. (2)
46(1995), no. 181, 107–118. http://dx.doi.org/10.1093/qmath/46.1.107
Google Scholar
[15]
Rodriguez-Palacios, A. and M. V. Velasco, A non-associative Rickart's dense-range-homomorphism theorem.
Q. J. Math.
54(2003), no. 3, 367–376. http://dx.doi.org/10.1093/qmath/hag015
Google Scholar
[16]
Spurný, J., A note on compact operators on normed linear spaces.
Expo. Math.
25(2007), no. 3, 261–263. http://dx.doi.org/10.1016/j.exmath.2006.11.002
Google Scholar
[17]
Tian, J. P., Evolution algebras and their applications.
Lecture Notes in Mathematics, 1921, Springer, Berlin, 2008.Google Scholar
[18]
Upmeier, H., Symmetric Banach manifolds and Jordan C*-algebras.
North-Holland Mathematics Studies, 104, North-Holland, Amsterdam, 1985.Google Scholar
[19]
Velasco, M. V., Spectral theory for non-associative complete normed algebras and automatic continuity.
J. Math. Anal. Appl.
351(2009), no. 1, 97–106. http://dx.doi.org/10.1016/j.jmaa.2008.09.036
Google Scholar
[20]
Villena, A. R., Automatic continuity in associative and nonassociative context.
Irish Math. Soc. Bull.
46(2001), 43–76.Google Scholar
You have
Access