Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T09:32:20.437Z Has data issue: false hasContentIssue false

Compact Induced Representations

Published online by Cambridge University Press:  20 November 2018

Robert C. Busby
Affiliation:
Drexel University, Philadelphia, Pennsylvania
Irwin Schochetman
Affiliation:
Oakland University, Rochester, Michigan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [15; 16; 17], Horst Leptin introduced what he called generalized group algebras. These Banach *-algebras are formed by letting a locally compact group G act on a Banach *-algebra A both by *-automorphisms and by a cocycle with values in the multiplier algebra, M (A ), of A. We will review the precise construction later, but for now we remark that examples include the group algebra of a group extension, the covariance algebras of quantum field theory, the “projective group algebras” of a group G (that is, for each complex-valued cocycle λ, called a multiplier in the literature, the Banach *-algebra whose nondegenerate *-representations are in bijective correspondence with the λ-projective representations of G), and the twisted group algebras of Edwards and Lewis [8; 9].

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1972

References

1. Bourbaki, N., Topologie general, 4th edition (Hermann, Paris, 1965).Google Scholar
2. Busby, R. C., Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc. 132 (1968), 7999.Google Scholar
3. Busby, R. C., On a theorem of Fell (to appear in Proc. Amer. Math. Soc.).Google Scholar
4. Busby, R. C. and Smith, H. A., Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503537.Google Scholar
5. Busby, R. C., Schochetman, I., and Smith, H. A., Integral operators and the compactness of induced representations (to appear in Trans. Amer. Math. Soc).Google Scholar
6. Dixmier, J., Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29 (Gauthier-Villars, Paris, 1964).Google Scholar
7. Dixmier, J., Les algèbres d'opérateurs dans l'espace Hilbertien, Cahiers Scientifiques, fasc. 25 (Gauthier-Villars, Paris, 1957).Google Scholar
8. Edwards, C. M. and Lewis, J. T., Twisted group algebras. I, Comm. Math. Phys. 13 (1969), 119130.Google Scholar
9. Edwards, C. M. and Lewis, J. T., Twisted group algebras. II, Comm. Math. Phys. 13 (1969), 131141.Google Scholar
10. Fell, J. M. G., Weak containment and induced representations of groups, Can. J. Math. 14 (1962), 237268.Google Scholar
11. Fell, J. M. G., Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424447.Google Scholar
12. Glimm, J., Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124138.Google Scholar
13. Glimm, J., Type I C*-algebras, Ann. of Math. 73 (1961), 572612.Google Scholar
14. Johnson, B. E., An introduction to the theory of double centralizers, Proc. London Math. Soc. 14 (1964), 411429.Google Scholar
15. Leptin, H., Verallgemeinerte L1-Algebren, Math. Ann. 159 (1965), 5176.Google Scholar
16. Leptin, H., Verallgemeinerte L1-Algebren und projektive Darstellungen lokal kompakter Gruppen. I, Invent. Math. 8 (1967), 257281.Google Scholar
17. Leptin, H., Verallgemeinerte L1-Algebren und projektive Darstellungen lokal kompakter Gruppen. II, Invent. Math. 4 (1967), 6886.Google Scholar
18. Mackey, G., Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134165.Google Scholar