No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Throughout this paper, let p be a prime, P be a p-group of order pt , and ϕ be an isomorphism of a subgroup R of P of index p onto a subgroup Q which fixes no non-identity subgroup of P, setwise. In [2, Lemma 2.2], Glauberman shows that P can be embedded in a finite group G such that ϕ is effected by conjugation by some element g of G. We assume that P is thus embedded. Then Q = P ∩ Pg. Let H = 〈P,Pg〉 and V = [H,Z(Q)], so Q ⊲ H and V ⊲ H.
Let E(p) be the non-abelian group of order p3 which is generated by two elements of order p. Then E(p) is dihedral if p = 2 and has exponent p if p is odd. If p is odd, then E* (p) is defined in § 2 to be a particular group of order p6 and nilpotence class three.