Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:36:39.133Z Has data issue: false hasContentIssue false

Finite Quotients of the Automorphism Group of a Free Group

Published online by Cambridge University Press:  20 November 2018

Robert Gilman*
Affiliation:
Stevens Institute of Technology, Castle Point Station, Hoboken, New Jersey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G and F be groups. A G-defining subgroup of F is a normal subgroup N of F such that F/N is isomorphic to G. The automorphism group Aut (F) acts on the set of G-defining subgroups of F. If G is finite and F is finitely generated, one obtains a finite permutation representation of Out (F), the outer automorphism group of F. We study these representations in the case that F is a free group.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Bochert, H., Ueber die Classe der transitiven Substitutionengruppen, Math. Ann. 19 (1897), 131144.Google Scholar
2. Cappel, F., Diplomarbeit (Aachen, 1974).Google Scholar
3. Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups (Springer Verlag, New York, 1965).Google Scholar
4. Dickson, L. E., Linear groups with an exposition of the Galois field theory (Dover Publications Inc., New York, 1958).Google Scholar
5 Dunwoody, M. J., On T-systems of groups, J. Australian Math. Soc. 8(1963), 172179.Google Scholar
6. Dunwoody, M. J. Nielsen transformations, in Computational Problems in Abstract Algebra, J. Leech ed. (Pergamon Press, Oxford and New York, 1969).Google Scholar
7. Gilman, R., A combinatorial identity with applications to representation theory, Illinois J. Math. 17 (1972), 347351.Google Scholar
8. Gorenstein, D. éd., Reviews on finite groups (Amer. Math. Soc, Providence, R.I., 1974).Google Scholar
9. Grossman, E., On the residual finitene s s of certain mapping class groups, J. London Math. Soc. (2) 9 (1974), 160164.Google Scholar
10 Hall, P., The Eulerian functions of a group, Quarterly J. Math. 7 (1936), 134151.Google Scholar
11. Magnus, W., Karrass, A., and Solitar, D., Combinatorial group theory (Interscience Publishers, New York, 1966).Google Scholar
12. Neumann, B. H. and Neumann, H., Zwei Klassen Charakterischer Untergruppen und ihre Faktorgruppen, Math. Nachr. 4 (1950), 106125.Google Scholar
13. Peluso, A., A residual property of free groups, Comm. Pure Appl. Math. 19 (1966), 435437.Google Scholar
14. Stork, D., Structure and applications of Schreier coset graphs, Comm. Pure Appl. Math. 24 (1971), 797805.Google Scholar
15. Stork, D. The action of the automorphism group of F2 upon the A6 and PSL(2, 7)—defining subgroups of F2, Trans. Amer. Math. Soc. 172 (1972), 111117.Google Scholar