Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T19:16:13.223Z Has data issue: false hasContentIssue false

On Some Recent Developments in the Theory of Series

Published online by Cambridge University Press:  20 November 2018

M. S. Macphail*
Affiliation:
Carleton College
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a number of recent papers, especially by Wilansky (4; 6), Zeller (8), and Peyerimhoff (3), the sequence-to-sequence transformation

A : (n = 0, 1, …)

has been studied under certain conditions, designated by FAK, PMI, etc. (see §3). The purpose of this note is to point out some relations among these conditions, and to show that some theorems previously obtained hold under weaker assumptions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1954

References

1. Banach, S., Théorie des opérations linéaires (Warsaw, 1932).Google Scholar
2. Mazur, S., Eine Anwendung der Theorie der Operationen bei der Untersuchung der Toeplitzschen Limitierungsverfahren, Studia Mathematica, 2 (1930), 4050.Google Scholar
3. Peyerimhoff, A., Konvergenz- und Summierbarkeitsfaktoren, Math. Z., 55 (1951), 2354.Google Scholar
4. Wilansky, A., An application of Banach linear Junctionals to summability, Trans. Amer. Math. Soc, 67 (1949), 5968.Google Scholar
5. Wilansky, A., Convergence fields of row-finite and row-infinite reversible matrices, Proc. Amer. Math. Soc, 3 (1952), 389391.Google Scholar
6. Wilansky, A., Summability: The inset, replaceable matrices, the basis in summability space, Duke Math. J., 19 (1952), 647660.Google Scholar
7. Zeller, K., Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z., 53 (1951), 463487.Google Scholar
8. Zeller, K., Abschnittskonvergenz in FK-Räumen, Math. Z., 55 (1951), 5570.Google Scholar