No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $X$ be an $n$-dimensional, finite, simply connected $\text{CW}$ complex and set
When $0<{{\alpha }_{X}}<\infty $, we give upper and lower bounds for $\sum\nolimits_{i=k+2}^{k+n}{\,\text{rank}}\text{ }{{\pi }_{i}}\left( X \right)$ for $k$ sufficiently large. We also show for any $r$ that $\alpha x$ can be estimated from the integers $\text{rk }{{\pi }_{i}}\left( X \right),\,i\,\le \,nr$ with an error bound depending explicitly on $r$.