Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T13:15:17.514Z Has data issue: false hasContentIssue false

An Approximation Theorem for Coarse V-Topologies on Rings

Published online by Cambridge University Press:  20 November 2018

Murray A. Marshall*
Affiliation:
Department of Mathematics and Statistics, University of Saskatchewan Saskatoon, Saskatchewan S7N 0W0
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An approximation theorem for V-topologies on not necessarily commutative rings is proved. This holds for a certain class of rings (called rings with enough units) and a certain class of V-topologies (called coarse V-topologies). This has application, for example, to V-topologies induced by orderings.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1994

References

1. Becker, E. and Rosenberg, A., Reduced forms and reduced Witt rings of higher level, J. Algebra 92(1985), 477503.Google Scholar
2. Brown, R., An approximation theorem for extended prime spots, Canad. J. Math. 24(1972), 167184.Google Scholar
3. Cohn, P. M., Skew field constructions, London Math. Soc. Lecture Note Series 27, Cambridge University Press, 1977.Google Scholar
4. Craven, T., Witt rings and orderings on skew fields, J. Algebra 77(1982), 7496.Google Scholar
5. Endler, O., Valuation theory, Springer-Verlag, 1972.Google Scholar
6. Fleischer, I., Sur les corps topologiques et les valuations, Acad, C. R.. Sci. Paris 236(1953), 13201322.Google Scholar
7. Goodearl, K. R., Von Neumann regular rings, Pitman, 1979.Google Scholar
8. Gräter, J., Der Approximationssatz für Manisbewertungen, Arch. Math. 37(1981), 335340.Google Scholar
9. Gräter, J., Der allgemeine Approximationssatz fur Manisbewertungen, Mh. Math. 93(1982), 277288.Google Scholar
10. Gräter, J., R-Pruferringe und Bewertungsfamilien, Arch. Math. 41(1983), 319327.Google Scholar
11. Griffin, M., Valuations and Prüfer rings, Canad. J. Math. 26(1974), AX2-A29. Google Scholar
12. Joly, J. R., Sommes de puissance d-ièmes dans un anneau commutatif, Acta Arith. 17(1970), 37114.Google Scholar
13. Kalhoff, F., An approximation theorem for epimorphisms of projective planes, to appear.Google Scholar
14. Kalhoff, F., Approximation theorems for uniform valuations, Mitt. Math. Ges. Hamburgto appear.Google Scholar
15. Kaplansky, I., Topological methods in valuation theory, Duke Math. J. 14(1947), 527541.Google Scholar
16. Kowalsky, H. J. und Durbaum, H., Arithmetische Kennzeichnung von Körpertopologien, J. Reine Angew. Math. 191(1953), 135152.Google Scholar
17. Manis, M., Valuations on a commutative ring, Proc. Amer. Math. Soc. 20(1969), 193198.Google Scholar
18. Manis, M., Real places on commutative rings, J. Algebra 140(1991), 484501.Google Scholar
19. Marshall, M. and Walter, L., Signatures of higher level on rings with many units, Math. Z. 204(1990), 129 143.Google Scholar
20. Mathiak, K., Valuations of skew fields and projective Hjelmslev spaces, Lecture Notes in Math. 1175, Springer-Verlag, 1986.Google Scholar
21. Powers, V., Holomorphy rings and higher level orders on skew fields, J. Algebra 136(1991), 5159.Google Scholar
22. Powers, V., Valuations and higher level orders in commutative rings, to appear.Google Scholar
23. Prestel, A. and Zeigler, M., Model theoretic methods in the theory of topological fields, J. Reine Angew. Math. 299/300(1978), 318341.Google Scholar
24. Ribenboim, P., Théorie des valuations, Les Presses de L'Université de Montreal, 1968.Google Scholar
25. Schilling, O., The theory of valuations, Amer. Math. Soc, Providence, Rhode Island, 1950.Google Scholar
26. Stone, A. L., Nonstandard analysis in topological algebra. In: Applications of model-theory to algebra, analysis and probability theory, Luxemburg, Springer-Verlag, 1969.Google Scholar
27. Walter, L., Quadratic forms, orderings, and quaternion algebras over rings with many units, Master's Thesis, Univ. of Saskatchewan, 1988.Google Scholar
28. Weber, H., Zu einem Problem von H. J. Kowalsky, Abh. Braunschweig. Wiss. Ges. 29(1978), 127134.Google Scholar