Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T06:04:33.980Z Has data issue: false hasContentIssue false

The Behaviour of Homology in the Localization of Finite Groups

Published online by Cambridge University Press:  20 November 2018

Carles Casacuberta*
Affiliation:
Universitat Autònoma de Barcelona, Departament de Matemàtiques, E - 08193 Bellaterra, Barcelona, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that, for a finite group G and a prime p, the following facts are equivalent: (i) the p-localization homomorphism l: G —> Gp induces p-localization on integral homology; (ii) the higher homotopy groups of the Bousfield-Kan Zp-completion of a K(G, 1) vanish; (iii) the group G is p-nilpotent.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

1. Adams, J. F., Localisation and completion. Lecture Notes, Chicago, 1975.Google Scholar
2. Baumslag, G., Some aspects of groups with unique roots, Acta Math. 104 (1960), 217-303.Google Scholar
3. Bousfield, A. K., The localization of spaces with respect to homology, Topology 14(1975), 133150.Google Scholar
4. Bousfield, A. K., Homological localization towers for groups and Tl-modules. Mem. Amer. Math. Soc. 10(1977), no. 186.Google Scholar
5. Bousfield, A. K. and Kan, D. M., Homotopy limits, completions and localizations. Lecture Notes in Math. 304, Springer-Verlag, 1972.Google Scholar
6. Carlsson, G., Equivariant stable homotopy and Segal's Burnside ring conjecture, Ann. Math. 120(1984), 189224.Google Scholar
7. Casacuberta, C. and Castellet, M., Localization methods in the study of the homology of virtually nilpotent groups. Preprint, 1990.Google Scholar
8. Casacuberta, C. and Peschke, G., Localizing with respect to self maps of the circle. Preprint, 1990.Google Scholar
9. Casacuberta, C., G. Peschke and Pfenniger, M., Sur la localisation dans les catégories avec une application à la théorie de l'homotopie, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 207210.Google Scholar
10. Casacuberta, C., G. Peschke and Pfenniger, M., On orthogonal pairs in categories and localization. Preprint, 1990.Google Scholar
11. Garcia Rodicio, A., Métodos homolögicos en grupos P-locales. Thesis, Univ. Santiago de Compostela, Spain, 1986.Google Scholar
12. Henn, H.-W., Cohomological p-nilpotence criteria for compact Lie groups , In Théorie de l'homotopie, Astérisque 191, Soc. Math. France (1990), 211220.Google Scholar
13. Hilton, P., G. Mislin and Roitberg, J., Localization of nilpotent groups and spaces. North-Holland Math. Studies 15, 1975.Google Scholar
14. Hilton, P. and Stammbach, U., A course in homological algebra. Springer-Verlag, 1971.Google Scholar
15. Hoechsmann, K., P. Roquette and Zassenhaus, H., A cohomological characterization of finite nilpotent groups, Arch. Math. 19 (1968), 225244.Google Scholar
16. Jackowski, S., Group homomorphisms inducing isomorphisms of cohomology , Topology 17(1978), 303 307.Google Scholar
17. Mislin, G., On group homomorphisms inducing mod p cohomology isomorphisms, Comment. Math. Helv. (3)65 (1990), 454461.Google Scholar
18. Quillen, D., A cohomological criterion for p-nilpotence, J. Pure Appl. Algebra (4)1 (1971), 361372.Google Scholar
19. Ribenboim, P., Torsion et localisation de groupes arbitraires. Springer-Verlag Lecture Notes in Math. 740, 1978,4444156.Google Scholar
20. Ribenboim, P., Equations in groups, with special emphasis on localization and torsion, II , Portugal. Math. (4)44(1987),417445.Google Scholar
21. Roitberg, J., Note on nilpotent spaces and localization, Math. Z. 137 (1974), 6774.Google Scholar
22. Serre, J.-P, Cohomologie Galoisienne. Springer-Verlag Lecture Notes in Math. 5, 1964.Google Scholar
23. Stammbach, U., Homology in group theory. Springer-Verlag Lecture Notes in Math. 359,1973.Google Scholar
24. Stammbach, U., Cohomological characterisations of finite solvable and nilpotent groups, J. Pure Appl. Algebra 11 (1977), 293301.Google Scholar
25. Stammbach, U., Another homological characterisation of finite nilpotent groups, Math. Z. 156 (1977), 209210.Google Scholar
26. Stammbach, U., Cohomological characterisations of classes of finite groups, Publ. Sec. Mat. Univ. Autönoma Barcelona 13 (1979), 89106.Google Scholar
27. Sullivan, D., Genetics ofhomotopy theory and the Adams conjecture, Ann. Math. 100 (1974), 179.Google Scholar
28. Swan, R. G., The nontriviality of the restriction map in the cohomology of groups, Proc. Amer. Math. Soc. 11 (1960), 885887.Google Scholar
29. Warfield, R. B., Nilpotent groups. Springer-Verlag Lecture Notes in Math. 513, 1976.Google Scholar