Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T00:47:28.886Z Has data issue: false hasContentIssue false

Comparaison de la Méthode des Constantes de Lyapunov et de la Bifurcation de Hopf*

Published online by Cambridge University Press:  20 November 2018

Guy Bonin
Affiliation:
160 Boyer #4, DorionPQ J7V 1K1
Josée Legault
Affiliation:
160 Boyer #4, DorionPQ J7V 1K1
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1988

Footnotes

*

Ce travail a été réalisé dans le cadre d'un programme de bourse de recherche au premier cycle accordée par le CRSNG.

References

1. Göbber, F. and Willamowski, K-D., Lyapunov approach to multiple Hopf bifurcation, J. Math. Anal, and Appl. 71 (1979), pp. 333350.Google Scholar
2. Rousseau, C. and Schlomiuk, D., Generalized Hopf bifurcations and applications to planar quadratic systems, preprint, 1985.Google Scholar
3. Shi-Shongling, , A method of constructing cycles without contact around a weak focus, J. Differential Equations 41 (1981), pp. 301312.Google Scholar
4. Shi-Shongling, , On the structure of the Poincaré-Lyapunov constants for the weak focus of polynomial vector fields, J. Differential Equations 52 (1984), pp. 5257.Google Scholar