Article contents
Exotic Torsion, Frobenius Splitting and the Slope Spectral Sequence
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper we show that any Frobenius split, smooth, projective threefold over a perfect field of characteristic $p\,>\,0$ is Hodge–Witt. This is proved by generalizing to the case of threefolds a well-known criterion due to $\text{N}$. Nygaard for surfaces to be Hodge-Witt. We also show that the second crystalline cohomology of any smooth, projective Frobenius split variety does not have any exotic torsion. In the last two sections we include some applications.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2007
References
[1] Bloch, S., Torsion algebraic cycles and a theorem of Roitman. Compositio Math.
39(1979), no. 1, 107–127.Google Scholar
[2] Bloch, S., Lectures on Algebraic Cycles. Duke University Mathematics Series 4, Duke University, Mathematics Department, Durham, NC, 1980.Google Scholar
[3] Bloch, S. and Kato, K., p-adic étale cohomology. Inst. Hautes études Sci. Publ. Math.
63(1986), 107–152.Google Scholar
[4] Colliot-Thélène, J.-L., Sansuc, J.-J., and Soulé, C., Torsion dans le groupe de Chow de codimension deux. Duke Math. J.
50(1983), no. 3, 763–801, 1983.Google Scholar
[5] Deligne, P. and Illusie, L., Relévements modulo p
2
et decomposition du complexe de de Rham. Invent. Math.
89(1987), no. 2, 247–270.Google Scholar
[6] Ekedahl, T., On the multiplicative properties of the de Rham-Witt complex. I. Ark. Mat.
22(1984), no. 2, 185–239.Google Scholar
[7] Gros, M. and Suwa, N., Application d’Abel-Jacobi p-adique et cycles algébriques. Duke Math. J.
57(1988), no. 2, 579–613.Google Scholar
[8] Gros, M. and Suwa, N., Le conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique. Duke Math. J.
57(1988), no. 2, 615–628.Google Scholar
[9] Igusa, J.-I., On Some problems in abstract algebraic geometry. Proc. Nat. Acad. Sci. U. S. A.
41(1955), 964–967.Google Scholar
[10] Illusie, L., Complexe de de Rham-Witt et cohomologie cristalline. Ann. Scient. école Norm. Sup.
12(1979), no. 4, 501–661.Google Scholar
[11] Illusie, L. and Raynaud, M., Les suites spectrales associées au complexe de de Rham-Witt. Inst. Hautes Études Sci. Publ. Math.
57(1983), 73–212.Google Scholar
[12] Joshi, K. and Rajan, C. S., Frobenius splitting and ordinarity. Inter. Math. Res. Notices, 2003 no. 2, 109–121.Google Scholar
[13] Lakshmibai, V., Mehta, V. B., and Parmeswaran, A. J., Frobenius splittings and blow-ups. J. Algebra,
208(1998), no. 1, 101–128.Google Scholar
[14] Mehta, V. B. and Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. of Math.
122(1985), no. 1, 27–40.Google Scholar
[15] Mehta, V. B. and Srinivas, V., Varieties in positive characteristic with trivial tangent bundle. Compositio. Math.
64(1987), no. 2, 191–212.Google Scholar
[16] Merkur’ev, A. S. and Suslin, A. A., K-cohmology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSr Ser. Mat.
46(1982), no. 5, 1011–1046.Google Scholar
[17] Nygaard, N., On the fundamental group of a unirational 3-fold. Invent. Math.
44(1978), no. 1, 75–86, 1978.Google Scholar
[18] Nygaard, N., Closedness of regular 1-forms on algebraic surfaces. Ann. Sci. École Norm. Sup.
12(1979), no. 1, 33–45.Google Scholar
[19] Schoen, C., On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks vector bundle. J. Reine Angew. Math.
364(1986), 85–111.Google Scholar
[20] Schoen, C., On the image of the ℓ-adic Abel-Jacobi map for a variety over the algebraic closure of a finite field. J. Amer.Math. Soc.
12(1999), no. 3, 795–838.Google Scholar
[21] Serre, J.-P., Sur la topologie des variétés algébriques en caractéristique p. In: Symposium internacional de topología algebraica. Universidad Nacional Autónoma de Mexico and UNESCO, Mexico, 1958, pp. 24–53.Google Scholar
[22] Shepherd-Barron, N., Fano threefolds in positive characteristic. Compositio Math.
105(1997), no. 3, 237–265.Google Scholar
[23] Srinivas, V., Decomposition of the de Rham complex. Proc. Indian Acad. Sci. Math. Sci.
100(1990), no. 2, 103–106.Google Scholar
[24] Suwa, N., Sur l’image de l’application d’Abel-Jacobi de Bloch. Bull. Soc. Math. France
116(1988), 69–101.Google Scholar
You have
Access
- 11
- Cited by