Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T16:17:50.909Z Has data issue: false hasContentIssue false

Instabilité de vecteurs propres d’opérateurs linéaires

Published online by Cambridge University Press:  20 November 2018

Ludmila Nikolskaia*
Affiliation:
UFR de Mathématiques et Informatique Université de Bordeaux-I 351, cours de la Libération 33405 Talence Cedex France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider some geometric properties of eigenvectors of linear operators on infinite dimensional Hilbert space. It is proved that the property of a family of vectors $({{x}_{\text{n}}})$ to be eigenvectors $T{{x}_{n}}={{\lambda }_{n}}{{x}_{n}}({{\lambda }_{n}}\ne {{\lambda }_{k}}\text{for}\,n\ne k)$ of a bounded operator $T$ (admissibility property) is very instable with respect to additive and linear perturbations. For instance, (1) for the sequence ${{\left( {{x}_{n}}+{{\epsilon }_{n}}{{v}_{n}} \right)}_{n\ge k(\epsilon )}}$ to be admissible for every admissible $({{x}_{\text{n}}})$ and for a suitable choice of small numbers ${{\epsilon }_{n}}\,\ne \,0$ it is necessary and sufficient that the perturbation sequence be eventually scalar: there exist ${{\text{ }\!\!\gamma\!\!\text{ }}_{n}}\,\in \,C$ such that ${{v}_{n}}\,=\,{{\gamma }_{n}}{{v}_{k}}\,\text{for}\,n\,\ge \,\text{k}$ (Theorem 2); (2) for a bounded operator $A$ to transform admissible families $({{x}_{\text{n}}})$ into admissible families $(A{{x}_{n}})$ it is necessary and sufficient that $A$ be left invertible (Theorem 4).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1999

References

[DSS] Douglas, R. G., Shapiro, H. S. and Shields, A. L., Cyclic vectors and invariant subspaces for the backward shift operator. Ann. Inst. Fourier (1) 20 (1970), 3776.Google Scholar
[G] Garnett, J. B., Bounded analytic functions. Academic Press, NY, 1981.Google Scholar
[GK] Gohberg, I. and Krein, M., Introduction to the theory of linear nonselfadjoint operators. “Nauka”,Moscow, 1965; Transl. Math. Monographs 18, Amer.Math. Soc., Providence, RI, 1969.Google Scholar
[H] Halmos, P., A Hilbert space problem book. Graduate Texts inMath. 19, Springer-Verlag, Heidelberg, 1982.Google Scholar
[KMR] Krein, M. G., Milman, D. P. and Rutman, M. A., Sur une propriété d’être une base dans l’espace de Banach. Zapiski Matematicheskogo Obschestva, Kharkov (5) 16 (1940), 106110 (en russe).Google Scholar
[N] Nikolskaia, L. N., Propriétés géométriques des systèmes de vecteurs propres et des spectres ponctuels d’opérateurs linéaires. Thèse, Institut Polytechnique de Léningrade, 1971.Google Scholar
[Ni] Nikolski, N., Treatise on the shift operator. Springer-Verlag, Heidelberg, 1986.Google Scholar
[S] Sarason, D.,Weak-star density of polynomials. J. Reine Angew.Math. 252 (1972), 115.Google Scholar
[Si] Singer, I., Bases on Banach spaces. Springer-Verlag, Heidelberg, 1970.Google Scholar