Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T21:20:27.161Z Has data issue: false hasContentIssue false

On Product Partitions of Integers

Published online by Cambridge University Press:  20 November 2018

V. C. Harris
Affiliation:
Department of Mathematics, San Diego State University, San Diego, California 92182, USA
M. V. Subbarao
Affiliation:
Department of Mathematics, University of Alberta, Edmonton, Alberta T6G 2G1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let p*(n) denote the number of product partitions, that is, the number of ways of expressing a natural number n > 1 as the product of positive integers ≥ 2, the order of the factors in the product being irrelevant, with p*(1) = 1. For any integer if d is an ith power, and = 1, otherwise, and let . Using a suitable generating function for p*(n) we prove that

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

1. George Andrews, E., The theory of compositions (I): The ordered factorizations ofn and a conjecture of C. Long, Canad. Math. Bull. 18(4)( 1975), 479–184.Google Scholar
2. Canfied, E. R., Paul Erdos and Carl Pomerance, On a problem of Oppenheim concerning “Factorisatio Numerorum, “, J. Number Theory, 17 (1983), 128.Google Scholar
4. Dickson, L. E., History of the theory of numbers, 2, 156157.Google Scholar
3. Carlitz, Leonard, Some remarks on Bell numbers, The Fibonacci Quarterly 18(1980), 66.Google Scholar
5. P. Erdôs, On some asymptotic formulas in the theory of “Factorisatio Numerorum, ”, Ann. of Math. 42 (1941), 989-993; corrections to two of my papers, Ann. of Math. 44 (1943), 647651.Google Scholar
6. Evans, R., An asymptotic formula for extended Eulerian numbers, Duke Math. J. 41 (1974), 161175.Google Scholar
7. Hardy, G. H. and Wright, E. M, An introduction to the theory of numbers, Fourth Edition (1960), 244245.Google Scholar
8. Hille, E., A problem in “Factorisatio Numerorum, ”, Acta Arith., 2 (1937), 134144.Google Scholar
9. Hughes, J. F. and Shallit, J. O., On the number of multiplicative partitions, Amer. Math. Monthly 90 (1983), 468471.Google Scholar
10. Ikehara, S., On Kalmar's problem in “Factorisatio Numerorum,”, Proc. Phys.-Math. Soc. Japan (3)21 (1939), 208-219; II. 23 (1941), 767774.Google Scholar
11. Kalmar, L., A “Factorisatio Numerorum“probélmâjârôl,, Mat. Fiz. Lapok 38 (1931), 115, Uber die mittlere Anzahl der Produktdarstellungen der Zahlen. (Erste Mitteilung), Acta Litt. Sci. Szeged 5(1931), 95- 107.Google Scholar
12. Calvin Long, T., On a problem in partial difference equations, Canad. Math. Bull. 13 (1970), 333335.Google Scholar
13. MacMahon, P. C., Dirichlet series and the theory of partitions, Proc. London Math. Soc. (2)22 (1924), 404— 411, Collected works of P.C. MacMahon, edited by George Andrews, E., M.I.T. Press, 1 1978,967973.Google Scholar
14. MacMahon, P. C., Combinatorial Analysis, Vol 7, Chelsea Publishing Co., 1960.Google Scholar
15. Matties, L. E. and Dodd, F. W., A bound for the number of multiplicative partitions, Amer. Math. Monthly, 93 (1986), 125126.Google Scholar
16. Oppenheim, A., On an arithmetic function, J. London Math. Soc, I (1926), 205-211 ; II 2 (1927), 123130.Google Scholar
17. Szekeres, G. and Turan, P., Uberdas zweite Hauptproblem der “Factorisatio Numerorum”, Acta Litt. Sci. Szeged 6 (1933), 143154.Google Scholar