No CrossRef data available.
Article contents
The Parity Distribution of Traces in Imaginary Quadratic Fields
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Computations of the Iwasawa λ -invariant for imaginary quadratic fields showed a discrepancy in the proportion of even and odd traces of certain integers from these imaginary quadratic fields. This paper shows that such a discrepancy is in some sense to be expected and that the proportion of even and odd traces of principal generators of powers of prime ideals in imaginary quadratic fields is related to the 3-primary component of the class group.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1991
References
1.
Birch, B. J. and Kuyk, W., éd., Modular Functions of One Variable, IV, Lecture Notes in Mathematics, Vol. 476, Springer-Verlag, New York,
1975.Google Scholar
2.
Dummit, D. S., Ford, D., H. Kisilevsky and Sands, J., Computation oflwasawa A -invariants for imaginary quadratic fields, in preparation.Google Scholar
3.
Dummit, D. S., Kisilevsky, H. and McKay, J., Multiplicative products of r\-functions, Contemporary Mathematics, Vol. 45 (1985), Amer. Math. Soc, 89-98.Google Scholar
4.
Scholz, A. and Taussky, O., Die Hauptideale der kubischen Klassenkörperimaginär-quadratischen Zahlkörper: ihre rechnerishe Bestimmung und ihr Einfluβ auf der Klassenkorperturm, J. Reine Angew. Math., 171 (1934), 19–41.Google Scholar
5.
Serre, J.-R, Divisibilité de certaines fonctions arithmétiques, L'Ens. Math., 22 (1976), 227–260.Google Scholar
6.
Serre, J.-R, Quelques applications du Théorème de Densité de Chebotarev, Publ. Math. I.H.E.S., no. 54 (1981), 123–201.Google Scholar
You have
Access